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Abstract

Recently, physically-based hydrological models have been gaining much popularity in various activities of water
resources planning and management, such as assessment of basin water availability, floods, droughts, and reser-
voir operation. Every hydrological model contains some parameters that must be tuned to the catchment being
studied to obtain reliable estimates from the model. This study evaluated the performance of different evolution-
ary algorithms, namely genetic algorithm (GA), shuffled complex evolution (SCE), differential evolution (DE), and
self-adaptive differential evolution (SaDE) algorithm for the parameter calibration of a computationally intensive
distributed hydrological model, variable infiltration capacity (VIC) model. The methodology applied and tested for
a case study of the upper Tungabhadra River basin in India and the performance of the algorithms is evaluated in
terms of reliability, variability, efficacy measures in a limited number of function evaluations, their ability for
achieving global convergence, and also by their capability to produce a skilful simulation of streamflows. The
results of the study indicated that SaDE facilitates an effective calibration of the VIC model with higher reliability
and faster convergence to optimal solutions as compared to the other methods. Moreover, due to the simplicity
of the SaDE, it provides easy implementation and flexibility for the automatic calibration of complex hydrological
models.

Key words: differential evolution, genetic algorithm, parameter estimation, self-adaptive differential evolution,
shuffled complex evolution, VIC model
Highlights

• Calibration of a computationally intensive distributed hydrologic model is performed.

• Evaluated the performance of different evolutionary algorithms for automatic calibration of VIC model.

• Self-adaptive scheme avoids tuning of the algorithm parameters.

• SaDE method is capable of finding the optimal parameters quickly and gives superior performance over GA

and SCE algorithms.
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Graphical Abstract
INTRODUCTION

Hydrological models are prevalent tools for representing the hydrological processes of a catchment in
mathematical form. Consequently, they are widely used in various water resources management
studies such as flood forecasting (Refsgaard et al. 1988), drought risk assessment (Sheffield &
Wood 2008), integrated river basin management (Cai et al. 2003), analyzing impacts of climate
change and anthropogenic activities on water resources (Arnell 1999), etc. These hydrological
models are broadly classified into conceptual and physically-based models with reference to the
interpretations of the dominant physical processes at a catchment. According to the spatial represen-
tation of catchment, they are further categorized into lumped, semi-distributed, and distributed
models. Physically-based distributed hydrological models (PBDHM) are considered to enhance the
hydrological simulation of a watershed by incorporating spatial heterogeneity of catchment variables
such as land uses, soil types, topographic features, and meteorological forcing (Chen et al. 2016).
However, the operational use of PBDHMs is complex and also requires greater computational
resources even for a smaller catchment, as it uses different model parameters for its various spatially
distinct computational units (Chen et al. 2016).
However, regardless of a physical or conceptual model, practically all hydrological models include

many parameters, and it cannot be possible to measure all of them in the field directly. Therefore, an
effective application of these models requires proper model calibration, which is related to the adjust-
ment of the model parameters to fit the simulated results with the observation data (Tolson &
Shoemaker 2007). The calibration of hydrological models can be performed either manually or auto-
matically (Kim et al. 2007). Manual calibration involves a trial and error procedure for adjustments of
the model parameters, but such calibration is time-consuming, tedious and its efficacy relies on the
subjective judgement of a modeller, which includes knowledge of the model and its interaction
with the participating watershed (Kim et al. 2007). On the contrary, automatic calibration is quick,
less subjective, and more efficient for finding the optimal parameter set than that of manual cali-
bration (Kamali et al. 2013). With the advancement of computational resources, many studies have
chosen automatic calibration over the manual calibration approach for hydrological model appli-
cations (Wang 1991; Duan et al. 1992). The automatic calibration approach uses an optimization
algorithm, which may be either a local or global optimization method, to explore the parameter
space according to some specified objective function, which refers to the disparity between the obser-
vation and model simulation (Madsen 2000). Local optimization methods were used in the initial
studies of automatic calibration for hydrological modelling (Ibbitt & O’Donnell 1971; Sorooshian
& Gupta 1983). However, the drawback of such local search methods is that they may get stuck in
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the local optima and never reach the global optimal solution as there may be several local optima for
the calibration problem of a hydrological model (Gan & Biftu 1996). Consequently, the overall per-
formance of any local search method mostly depends on its initial solution.
To address such limitations, recent studies have inclined toward the utilization of global search

methods for hydrological model calibration. In hydrological modelling, the most commonly used
population-based evolutionary algorithms (EAs) are genetic algorithm (GA) (Wang 1991), shuffled
complex evolution (SCE) algorithm (Duan et al. 1992), particle swarm optimization (PSO) (Scheer-
linck et al. 2009), and differential evolution (DE) (Guo et al. 2014). Even though it is well-known
that due to the issue of equifinality, i.e. multiple parameter values leading to the same model efficiency
(Beven & Freer 2001), the obtained solution from these algorithms may strongly depend on the model
representation, and chosen objective function (Scheerlinck et al. 2009; Osuch et al. 2015). The GA is
one of the earliest evolutionary search based techniques that has been successfully applied for cali-
bration of hydrological models (Wang 1991; Liong et al. 1995). Also, few studies on hydrological
model calibration have highlighted the dominant performance of the SCE algorithm over other con-
current methods. For example, Arsenault et al. (2014) compared several optimization algorithms for
three hydrological models in multiple basins over the United States and noted the SCE algorithm
would be the most preferred choice, as it outperformed the GA in both convergence speed and com-
puting power. However, the majority of the studies were conducted on simple conceptual
hydrological models, which require hardly a few seconds for a model run. Consequently, those studies
took advantage of utilizing a large number of function evaluations for model calibration with EAs. For
example, Sorooshian et al. (1993) noted the convergence of 13 parameter calibration problem for the
Sacramento Soil Moisture Accounting (SAC-SMA) model after 23,024 function evaluations, and Gan
& Biftu (1996) reported that the EAs required an average of 10,818 function evaluations for estimating
13 parameters of SAC-SMA in eight catchments across the globe; and Qin et al. (2016) accomplished
the calibration of seven parameters of the Simplified HYDROLOG (SIMHYD) model with an average
of 11,153 function evaluations. In the case of modern complex hydrological models, such a large
number of function evaluations demands much higher computational resources and time, which
makes their calibration unreasonable. For instance, Tolson & Shoemaker (2007) noticed that the cali-
bration of the SWAT model using SCE took a computational time of 14 and 140 days for 10,000 and
100,000 SWAT model evaluations, respectively.
To deal with such issues, there is a need to focus on improving the performance of the algorithms to

achieve faster convergence to the optimal solution. In this direction, few optimization algorithms
were applied to achieve faster convergence than the others, but the optimization algorithms require
sensitivity analysis and fine-tuning of the several algorithm parameters to achieve their best perform-
ance. Furthermore, the performance of most of the EAs also depends on the complexity of the
problem, which may require huge computational time for a large number of decision variables. There-
fore, for the calibration of complex hydrological models, it is desirable to develop an algorithm that
would demand nominal user configuration and yield optimal (or near-optimal) solutions with a lesser
number of function evaluations (Vrugt et al. 2009; Zheng et al. 2012).
The primary focus of this study is to present an efficient methodology for automatic calibration of a

physically-based complex distributed hydrological model, which will require minimal user configur-
ation and a lesser number of function evaluations. This would facilitate efficient utilization of
hydro-meteorological data, which in turn could be extracted by well-calibrated hydrological
models. For this purpose, a self-adaptive differential evolution (SaDE) algorithm is presented. The
DE algorithm is a global optimization technique proposed by Storn & Price (1997). DE is easy to
implement and is reported to have a better (or comparable) performance with respect to other EAs
(Reddy & Kumar 2007). However, like other EAs, the performance of the DE is also dependent on
the setting of its control parameters, and this may result in a huge computational burden (Zheng
et al. 2012). The SaDE algorithm is thus an improvement over the basic DE in this regard, where
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two control parameters of the algorithm are continuously updated during the search process. A few
recent studies have also found that self-adaptive variants of DE outperformed other EAs, including
GAs and basic DEs, in terms of faster convergence and a higher success rate (Schardong & Simonovic
2015; Pulluri et al. 2017; Sirsant & Reddy 2018). However, only a few studies used the self-adaptive DE
method for water resources problems, like Zheng et al. (2012) used for the optimal design of four water
distribution networks; Sirsant & Reddy (2018) applied DE and SaDE methods for the reliability-based
design of water distribution networks and noted that SaDE provided quick optimal solutions consist-
ently and performed better than DE, particularly for problems with a large number of decision
variables. With this view, the present study examines the potential of the SaDE algorithm for calibration
of a complex distributed hydrological model, namely the variable infiltration capacity (VIC) model.
In this study, a three-layer VIC hydrological model (Liang et al. 1994) is chosen to simulate the rain-

fall-runoff process at a medium-size catchment located in the state of Karnataka, India. The VIC
model is a physically-based hydrological model, which can simulate most of the important hydrologi-
cal processes in a catchment. Previously, the VIC model was successfully applied for water resources
assessment studies (Schumann et al. 2013). The VIC model has several parameters that require rigor-
ous calibration before its application to a catchment for hydrological studies. The calibration of these
parameters is a challenging task and requires much computational time and a large number of VIC
model simulations. This study presents an effective methodology for automatic calibration of the
VIC hydrological model using the SaDE algorithm, and its performance is evaluated by comparing
it with the GA, SCE and DE algorithms to verify the competence of the methodology in terms of
reliability, variability, and efficiency. The specific objectives of the present study include: (i) to present
SaDE based methodology for automatic calibration of the VIC hydrological model; (ii) to evaluate the
performance of the SaDE by comparing with the results of the GA, SCE and DE algorithms.
The rest of the paper is organized as follows. The following section presents details of methods used

in the study viz., details of the optimization algorithms, and VIC hydrological model. Next, the appli-
cation of the SaDE method for automatic calibration of the VIC model for the upper Tungabhadra
River basin is discussed. The results of the VIC model for hydrological simulations and performance
evaluation of the SaDE method by comparing them with the results of GA, SCE and DE methods are
presented in the following section. Finally, the conclusions of the study are presented.
METHODOLOGY

VIC hydrological model

In this study, the variable infiltration capacity (VIC) model, a physically-based distributed hydrologi-
cal model, is selected for simulation of hydrological variables from the basin. The VIC model
considers the interaction between the biosphere, vegetation, atmosphere, and soil dynamics for the
estimation of water and energy fluxes. In contrast with other comparable hydrological models, the
exclusive features of the VIC model are the representation of subgrid variation in vegetation within
a single grid, consideration of variable infiltration among multiple soil layers, and estimation of non-
linear baseflow from bottom soil layer (Liang et al. 1994).
The Penman–Monteith method and the Horton infiltration curve are used by the model for esti-

mation of evapotranspiration and subgrid variation of soil infiltration capacity, respectively (Liang
et al. 1994). Total runoff estimation in the model comprises direct runoff (surface flow) and base
flow (subsurface flow). Direct runoff is generated from the top two layers by assessing the saturation
remainder flow and infiltration surplus flow from those two layers. Baseflow contributed from the
bottom-most layer only (Franchini & Pacciani 1991) and is computed according to the ARNO
model (ARNO refers to a semi-distributed conceptual rainfall-runoff model, which derives its name
a.silverchair.com/h2open/article-pdf/3/1/306/863120/h2oj0030306.pdf
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from its first application to the Arno River, Todini (1996)). In the VIC model, direct runoff and base-
flow are mathematically expressed as:

Qd ¼
PþW �Wmax, Pþ i0 � im

PþW �Wmax � 1� 1� i0 þ P
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whereQd is the direct runoff (mm), P is the precipitation (mm),W andWmax are the initial and maximum
soil moisture for the upper soil layers (mm), i0 and im (mm) are the initial and maximum infiltration rate
(mm), bi is a parameter controlling the shape of the variable infiltration curve (unitless), Qb denotes the
base flow (mm), Dm represents maximum daily base flow (mm), Ds is a fraction (unitless) of Dm whereby
nonlinear baseflow begins, W3 and Wmax

3 are initial and maximum soil moisture at the bottom soil
layer (mm), and Ws is the fraction (unitless) of Wmax

3 where nonlinear baseflow begins.
The VIC model produces the runoff individually in model grid cells. Therefore, a separate routing

model is selected to transfer simulated runoff from the individual model grids to the outlet of the study
area. This study employed the routing method of Nijssen et al. (1997), which uses the unit hydrograph
theory for transporting the flow inside a grid to the outlet of that grid and linearized Saint-Venant
equations for the channel routing of the flow from the grid outlet to the basin outlet through the
river network.

Evolutionary algorithms

This study uses the GA, SCE, DE, and SaDE algorithms for calibration of the parameters of the VIC
hydrological model. Brief details of these EAs are given below.

Genetic algorithm

Genetic algorithms (GA) are population-based heuristic search algorithms inspired by natural selec-
tion and survival of the fittest concept (Goldberg 1989). The GA algorithm starts by initializing a
population of candidate solutions that have to be drawn randomly from a feasible parameter space.
The individual members are chosen in each generation by fitness values, in which better fit chromo-
somes in the population are chosen to replicate new promising offspring. Next, the new population is
produced by applying crossover and mutation operations to those selected members. The crossover
operator selects parent solutions to generate new offspring solutions by sharing important character-
istics of both parent solutions. In order to increase the diversity of the new population, the offspring
solutions are randomly mutated. In this way, the generation of new candidate solutions is repeated
until the stopping criterion is satisfied. More details of the algorithm can be found in Goldberg
(1989) and Reddy & Kumar (2012). The pseudo-code of the GA algorithm is given in Appendix A.1.

Shuffled complex evolution algorithm

The shuffled complex evolution (SCE) algorithm was proposed as a global optimization technique for
parameter estimation of hydrological models (Duan et al. 1992). The SCE algorithm begins by ran-
domly initializing the population within its feasible range and then partitioning the population into
different communities (or complexes). All such communities are allowed to evolve (generate
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offspring) freely for guiding the search in a reformed direction. All the members of a particular commu-
nity have the chance to take part in the offspring generation. However, one better member of the
community has a higher possibility of getting engaged in the generation of the offspring, which ensures
the competitiveness of evolution. After a few generations, the entire population is shuffled, and new
communities are formed. This process helps in sharing information between various communities to
explore the search space thoroughly. The pseudo-code of the SCE-UA algorithm is given in Appendix
A.2. For more details of the method, one can refer to Duan et al. (1992) and Vrugt et al. (2003).
Differential evolution

Differential evolution (DE) is one of the widely used population-based global optimization algorithms
which is based on the process of natural evolution and has outperformed many other EAs (Storn &
Price 1997). The unique trial vector generation strategy (such as mutation and crossover operation) dis-
tinguished DE from other EAs, although it has similar basic operations (mutation, crossover, and
selection) to the other EAs. In DE, the mutation operator is applied first to produce the mutant vectors
by modifying the initial vectors, and then the crossover operator is employed to those mutant vectors to
generate the trial vectors. Finally, the selection operator is used to select the trial vectors which will sur-
vive to the next iteration. DE is an iterative procedure; after the initialization, it enters into an iterative
loop of mutation, crossover, and selection operations and continues until the terminal condition is sat-
isfied. Among the various operators, the mutation is the most important operator in DE and is highly
dependent on the mutation factor (F). The crossover rate (CR) in the crossover operation greatly influ-
ences the generation of the trial vector and the convergence characteristics of the algorithm. Therefore,
the performance of the DE algorithm is more reliant on the choice of F and CR values. The pseudo-code
of the DE algorithm is given in Appendix A.3.
Moreover, like the GA and SCE algorithms, the performance of DE is also highly dependent on the

chosen parameter settings, and their incorrect selection may lead to the poor performance of the
algorithm (Das et al. 2016). So, proper sensitivity analysis is required before its application to a
given problem.
Self-adaptive differential evolution algorithm

The self-adaptive differential evolution (SaDE) algorithm abstains from the substantial computational
costs of traditional DE for finding the appropriate control parameters of the algorithm. Here, the con-
trol parameters are progressively self-adapted by means of their past involvement in producing
favourable solutions. This study adopts the SaDE algorithm with changes to the parameter selection
of the crossover rate (CR) and the mutation factor (F) in contrast to the one presented in Qin et al.
(2009). Here, the mean value of the F and CR parameters are updated after every ten generations
based on the successful values of the parameters over the last ten iterations, and then a new set of
mutation and crossover rates are generated for each individual using these updated mean values.
More details about the steps involved in the SaDE methodology are explained below.

1. Generate initial population XG
i ¼ {xGi,1, x

G
i,2, . . . , x

G
i,D} by randomly choosing individuals within the

search space. Here xGi,j represents the initial value of the jth parameter in the ith individual at the initial
population,G represents the current generation number, andD denotes the dimension of the problem.

2. Initial values of mutation factor F and crossover rate CR are randomly generated using their speci-
fied mean and standard deviation values as follows:

Fi ¼ mF þ Randn1 � sF

CRi ¼ mCR þ Randn2 � sCR

�
(3)
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where Fi [ [0, 2] and CRi [ [0, 1] are the initial values of mutation factor and crossover rate for the
ith population; randn1 and randn2 are random numbers generated from the standard normal dis-
tribution; mF and sF are the mean and standard deviation of the mutation factor; mCR and sCR are
mean and standard deviation of the crossover rate. The mean and standard deviation values are
updated based on the following recommendation from Qin et al. (2009) and also after performing
initial sensitivity analysis, the mF and sF are initialized with values of 0.5 and 0.3, while mCR and
sCR are set at values of 0.5 and 0.1, respectively.

3. Calculate the objective function values for each member of the population in the current
generation.

4. Mutation is performed to every individual (XG
i ) in the population. These XG

i are considered as the
target vector, and their corresponding mutant vectors VG

i ¼ {VG
i,1, V

G
i,2, . . . , V

G
i,D} are generated by

adding the weighted difference between two randomly chosen individuals from the current popu-
lation to a third randomly selected individual from the current population. Mathematically it can
be written as:

VG
i ¼ XG

r1 þ Fi(XG
r2 �XG

r3 ) 8i ¼ 1, 2, . . . , NP (4)

where VG
i ¼mutant vector associated with the ith population at the Gth generation. XG

r1 , X
G
r2 and

XG
r3 are randomly selected vectors from the current generation (r1 = r2 = r3), Fi is the mutation

factor for target vector i, and NP represents the population size.
5. Next, crossover is implemented for the generation of trial vectors UG

i ¼ {UG
i,1, U

G
i,2, . . . , U

G
i,D} by

choosing between either a mutant vector (VG
i ) or the corresponding target vector (XG

i ) using a
crossover factor. Thus, the trial vector (UG

i ) is generated as:

uG
i,j ¼

vGi,j, if randj [0, 1] � CRior (j ¼ jrand)

xGi,j, otherwise

(
8i ¼ 1, 2, . . . , NP (5)

where uG
i,j, v

G
i,j, x

G
i,j are the trial vector, mutant vector, and target vectors associated with the jth

decision parameter of the ith member at generation G. The randj is a uniform random number
in between 0 to 1, and jrand can take any random value in the range 1 to D, D is the dimension
of the target vector.

6. Subsequently, the objective function value f(UG
i ) for the individual trial vector is computed and

then compared with the objective function value of the corresponding target vector XG
i . The

vector which holds the lower value of the objective function continues for the next generation
(XGþ1

i ) (for minimization type of objective function). In other words:

XGþ1
i ¼ UG

i , if f(Ui,G) � f(Xi,G)
XG

i , otherwise

�
8i ¼ 1, 2, . . . , NP (6)

The above steps of mutation, crossover, and selection operations in Equations (4)–(6) are per-
formed for all members in the population (NP).

7. To update the values of two control parameters (i.e. F and CR) in the SaDE algorithm, the values of
F and CR contributing to trial vectors effectively arriving for the next generation are noted after a
certain number of generations (say, ten generations). Then, averaging those successful values of the
F and CR provides the updated mean values of mutation factor (mF) and crossover rate (mCR),
respectively. With these updated values of mF and mCR, a new set of F and CR values are generated
as described previously in Equation (3) (i.e. assuming normal distributions for F and CR with the
specified standard deviation values).
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8. The above steps are repeated in a loop until the convergence criterion is satisfied. The convergence
criteria employed in the present study are either there is no improvement in the objective function
value for ten successive generations, or the algorithm has reached the maximum number of allow-
able generations (Imax).

More details of the SaDE method can be found in Qin et al. (2009) and Sirsant & Reddy (2018).
APPLICATION

Study area

The study area is situated in the upper Tungabhadra River basin in Karnataka, India. The location
map of the study area is shown in Figure 1. The spatial extent of the study area ranges from 75°70E
to 75°570E and 13°70N to 14°150N, with the basin outlet at Honnali gauging station. The basin has
a catchment area of 7,075 km2 with elevations ranging from 542 to 1,890 m above mean sea level.
The study area receives an average annual rainfall of 1,016 mm. The average annual temperature is
26.7 °C in the basin. A semi-arid climatic condition prevails in the study area, and the majority of
rains occur from June to November during the south-west and north-east monsoons. It is predomi-
nantly covered by agricultural land with loamy to red sandy soil as the dominant soil type.
Chikamagalur, Shimoga, and Devanagari are the three major districts falling under the study area
and they are greatly dependent on water from the Tunga River. Accessibility of different observed
hydro-meteorological datasets and nonexistence of large control structures are the main reasons for
the selection of this study area.

Data used

Daily gridded precipitation data (0.25� 0.25°) collected from the Indian Meteorological Department
(IMD) are used in this study as the primary forcing variable for all hydrological simulations. Daily
temperature data was also taken from the IMD at a spatial resolution of 1� 1°. Wind speed data
were collected from the National Center for Environmental Prediction (NCEP) reanalysis data at
2.5� 2.5° scale. This study used soil information from the Food and Agricultural Organization
(FAO) harmonized world soil database at 30 arc-second (∼1 km) spatial resolution. Land-use and
land-cover data for the study were derived from MODIS MOD12Q1 Land Cover Products (1 km),
which was obtained from NASA’s data distribution portal. SRTM (90 m) DEM was collected from
the National Remote Sensing Centre of India. The data of daily observed streamflow at the outlet
of the catchment, Honnali Hydro-observation site, were obtained from WRIS-India.

VIC model calibration

VIC model settings

Based on previous studies, 13 flow-related parameters from the VIC model were chosen for the auto-
matic calibration (Demaria et al. 2007; Xie et al. 2007). These 13 parameters, along with their
descriptions, model response, ranges, and units, are presented in Table 1. Among these 13 parameters,
one governs direct runoff response, eight govern drainage responses, and four control the baseflow
responses. During the calibration process, these selected 13 parameters shared the same value for
the whole model domain. The other VIC model parameters are obtained from the field measurement,
which is varied across the model domain. The calibration could have considered independent spatial
values for all the calibration parameters, but that would have increased the complexity of the
a.silverchair.com/h2open/article-pdf/3/1/306/863120/h2oj0030306.pdf
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calibration to a great extent (i.e. more than 180 parameters to be estimated), which may have led to
impractical longer optimization time with the available computational resources.
The VIC model and aforementioned routing model source code are first compiled in the Linux

environment using the GNU Compiler Collection (GCC). The integration of the SaDE optimization
algorithm with the VIC model is shown in Figure 2. The simulation-optimization framework is
implemented in the MATLAB environment. For this integration it first requires creation of all the
input files (i.e. meteorological forcing files, soil parameter file, vegetation parameter file, and vegetation
a.silverchair.com/h2open/article-pdf/3/1/306/863120/h2oj0030306.pdf



Table 1 | Details of the VIC model parameters selected for calibration

Parameter Description Model response Range Units

bi Infiltration parameter Direct flow 1� 10�5–0.4 –

Dm Maximum baseflow velocity Base flow 0–30 mm/day

Ds Fraction of max baseflow velocity for nonlinear baseflow Base flow 0–1 –

Ws Fraction of max soil moisture for nonlinear baseflow Base flow 0–1 –

d1 Thickness of soil layer 1 Drainage 0.01–0.5 m

d2 Thickness of soil layer 2 Drainage 0.1–2 m

d3 Thickness of soil layer 3 Base flow 0.1–2 m

Ks1 Saturated hydraulic conductivity for first layer Drainage 1–10,000 mm/day

Ks2 Saturated hydraulic conductivity for second layer Drainage 1–10,000 mm/day

Ks3 Saturated hydraulic conductivity for third layer Drainage 1–10,000 mm/day

exp1 Exponent (Brooks-Corey drainage eq.) for first layer Drainage 8–30 –

exp2 Exponent (Brooks-Corey drainage eq.) for second layer Drainage 8–30 –

exp3 Exponent (Brooks-Corey drainage eq.) for third layer Drainage 8–30 –
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library file) and a global parameter file (i.e. model configuration file) for the simulation of the VICmodel.
We also need to define the required input files (i.e. flow direction file, area mask file, area fraction file,
outlet station file, and a model configuration file) for the routing model. Next, the SaDE algorithm is
implemented in the MATLAB, as discussed above under ‘Self-adaptive differential evolution algorithm’

(called the SaDEmodule). The SaDEmodule calls the simulation module whenever it needs to compute
the fitness values of the member solutions of the initial population or the recent trial vectors. The simu-
lation module first updates the appropriate VIC input files using the feedback received from the SaDE
module and then runs the VIC model to produce the hydrological fluxes at each model grid. Next, the
routing model is executed via the simulation module to obtain the simulated discharge at the basin
outlet. Subsequently, the root-mean-square error (RMSE) is computed as the fitness measure by compar-
ing the simulated discharge with the observed discharge data and sends this information back to the
SaDEmodule. The optimization using the SaDEmodule progresses with its continuous interconnection
with the simulation module until certain stopping conditions are met. Similarly, the GA, SCE and DE
algorithms are also implemented and linked to the VIC model in the MATLAB environment. The
study used four years of data (1 January 1995–31 December 1998) for calibration, and three years of
data (1 January 1999–31 December 2001) for validation of the VIC model.
Calibration criteria and performance measures

Evaluation of any hydrological model is usually conducted by pairwise comparisons of model-simu-
lated flow values with the observed ones. The RMSE between observed and simulated flows is
used as the calibration criteria (objective function) to determine optimal parameters of the VIC hydro-
logical model (Madsen 2000; Kavetski & Clark 2010). RMSE calculates the average squared errors for
all simulated flow values and is defined as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

(Si �Oi)
2

vuut (7)

where Oi and Si are observed and simulated flow values for the ith time step, and n is the number of
time steps.
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Figure 2 | Schematic layout of SaDE based automatic calibration of VIC hydrological model.
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Then, the performance of the calibration algorithms is assessed by four commonly used evaluation
criteria, i.e. Nash–Sutcliffe efficiency (Ens), determination coefficient (R2), percent bias (PBIAS), and
mean of simulated flow (Qs). These Ens, R

2, and PBIAS are defined in Appendix B. The Ens assesses
the degree of fitness between simulated and observations hydrograph by a normalized statistic
based on the ratio of the residual variance to observed data variance. Values of Ens can range between
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–∞ to 1, while a value of Ens¼ 1 suggests a perfect match between simulated and observed data, and a
value of Ens, 0 indicates that the observed mean would produce better accuracy than the model
simulated streamflows. The R2 is the ratio of explained variation to total variation, which reveals
the strength of association between the simulated and observed data. Values of R2 can vary between
0 and 1, while a higher value designates a better agreement. The PBIAS provides a view of the average
tendency of under- or overprediction of the simulated discharge with respect to the observation data.
Parameter settings of the algorithms

All the algorithms used in this study need some parameter settings to be defined by the user. For the
SaDE algorithm, all the parameter settings except for the population size were discussed previously.
With a limited number of function evaluations, a relatively lower population size is found to be more
effective than the larger population size for calibration of hydrological models by EAs (Zhang et al.
2009). Therefore, a population size of 30 was selected for GA, DE and SaDE algorithms. The
mutation factor and crossover rate for DE were chosen as 0.5 and 0.9, respectively, following sugges-
tions from past studies (Storn & Price 1997; Brest et al. 2006) and after performing some preliminary
sensitivity analysis for the parameters. For the implementation of GA, the MATLAB genetic algorithm
toolbox is used with crossover fraction and probability rate of mutation values set at 0.8 and 0.01,
respectively, which are selected after some preliminary sensitivity analysis. In the SCE algorithm,
the number of complexes (p) was the most important parameter. In this study, for the SCE algorithm
the value of p is set equal to the number of calibration parameters (i.e. 13), and the other parameter
values are selected following suggestions from past studies (Duan et al. 1992; Kuczera 1997) as well as
after carrying out some preliminary sensitivity analysis.
RESULTS AND DISCUSSION

As one execution of the VIC hydrological model took an average of 65 seconds on a personal com-
puter (PC) with a configuration of Intel Core i7-4790 3.60 GHz processor with 8 GB RAM,
performing a large number of model evaluations during the calibration process is cumbersome.
This is particularly true for EAs, which need to be executed for multiple trial runs. Therefore, the cali-
bration of the VIC model is performed with a perspective of a limited number of model evaluations.
The maximum number of model evaluations was fixed at 500 for each optimization run (except for
checking the global convergence, where 5,000 function evaluations were permitted). Results from
the proposed SaDE based calibration were compared with the results from GA, SCE and DE algor-
ithms. This comparison consists of ten optimization runs for each optimization algorithm as all four
algorithms are stochastic in nature, and therefore their comparative performance must be evaluated
for several runs originating from the independent random population. The variation of the average
best solution attained in ten optimization runs with the number of function evaluations was presented,
which provided a comparison of average performance for the four algorithms. For further evaluation
of the algorithm performance, additional tests such as stability (or variability in multiple trials),
reliability, and statistical tests were also conducted in the study. It also examined the ability of the
SaDE algorithm to achieve stable convergence to the global optimal solution with additional compu-
tational expenses.
Comparison of algorithms’ performance

To check the ability of the algorithms to reach the global optimal solution, ten separate optimization
trial runs were performed (with a computational cost of 5,000 model evaluations in each trial run) for
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the GA, SCE, DE, and SaDE algorithms. Each trial run of an EA required almost 4 days to execute for
the current problem. Therefore, such comparisons were accomplished only after a massive compu-
tational cost, which can help in understanding the evolution skill of the SaDE and other
algorithms in finding a global optimal solution, if possible, later in a restricted computational cost.
The results showed that most of the time, SaDE and other EAs (i.e. GA, SCE, DE) attained optimal
solutions at the end of 5,000 model evaluations. However, their performance at different stages of
evolution was highly variable and dissimilar. For instance, the SaDE found its best solution after
the 2,005 model evaluation, while GA and SCE took 2,982 and 4,474 model evaluations, respectively,
to find the optimal solution. Even though the SaDE took 2,005 model evaluations for its complete
convergence, it was noteworthy that more than 95% of its maximum fitness was achieved within
346 model evaluations. For the SCE algorithm, it took 2,632 model evaluations to attain the same
95% maximum fitness. Overall, it seems clear from these results that the SaDE algorithm can con-
verge to a global optimal solution if an adequate computational budget allowed, and converges
much faster than other EAs.
For computationally intensive complex hydrological models, the number of model evaluations

required to achieve better objective values is a vital feature for choosing an optimization algorithm.
With a detailed representation of a large catchment area, other physically-based hydrological
models similar to the VIC model may also take a longer time for their executions. In such a case, run-
ning the model for a large number of times becomes very challenging. Therefore, preference should be
given to the algorithm which is able to obtain superior objective function value with a limited com-
putational budget (Duan et al. 1992; Tolson & Shoemaker 2007). In this direction, the
performance of the SaDE was further assessed with limited model evaluations. To achieve this, the
maximum number of model evaluations was fixed at 500 for each optimization run, which took
about 8 hours of computational time. Ten such trial runs were performed for each of the GA, SCE,
DE and SaDE algorithms and the plot of average best RMSE as the objective function value against
the number of model evaluations is shown in Figure 3. From Figure 3, it is to be noted that the con-
vergence speed of SaDE is faster than the other three algorithms. Initially, the SCE algorithm
exhibited better convergence than the GA and DE algorithms, but finally, the GA algorithm reached
lower objective function values than the SCE and DE algorithms. Overall, the SaDE algorithm con-
sistently performed better than the other three algorithms. Even at half of the total model evaluations
(250), the SaDE average objective function value (130.85) was still better than the final average objec-
tive function values (i.e. after 500 model evaluations) of GA (132.1), DE (138.25) and SCE (136.2).
This shows the dominant performance of SaDE over the other algorithms, even with a smaller
number of model evaluations.
Figure 3 | Comparison of convergence characteristics of average best objective function values (RMSE) for the GA, SCE, DE and
SaDE algorithms with a limited function evaluation over ten optimization trial runs.
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Nevertheless, the results reveal that four optimization algorithms showed diverse performance at a
different number of model runs (Figure 3). Although the results confirmed that SaDE was the most effi-
cient optimization algorithm for the calibration of the VIC model, as it had resulted in the lowest
objective function value compared to the GA, SCE and DE algorithms, there was still a need to
assess the significance of the results as well. Therefore, the statistically significant difference between
the mean and median of the best objective function values from the four algorithms were examined
using the well-known two-sample t-test andWilcoxon rank-sum test, respectively, and the results are pre-
sented in Table 2. These two tests with the null hypothesis of identical mean were carried out at the 5%
significance level. A p-value lower than the reference significance level suggested a rejection of the null
hypothesis. The p-values obtained for the comparison of SaDE with those other algorithms were 1.2�
10�5 (t-test for DE), 0.012 (t-test for GA), 9.7� 10�5 (t-test for SCE), 1.8� 10�4 (Wilcoxon Rank-Sum-
test for DE), 0.017 (Wilcoxon Rank-Sum-test for GA), and 1.8� 10�4 (Wilcoxon Rank-Sum-test for
SCE). Therefore, results from both the two-sample t-test and the Wilcoxon rank-sum test were consist-
ent, which suggested that the SaDE performed significantly better than the other three algorithms.
In the case of expensive model evaluation, it is of vital importance to select an optimization algor-

ithm that can generate satisfactory solutions repeatedly, i.e. produce smaller variability in the
objective function values for multiple trial runs. Smaller variability indicates greater stability of an
algorithm. Therefore, a little variability with a smaller mean objective function value (RMSE) rec-
ommends a more robust algorithm for calibration. For practical calibration of the hydrological
model with a lengthy simulation run, one will most likely prefer an optimization algorithm that
needs only a single run for its calibration. Consequently, the algorithm that gives consistently good
results is evidently a better choice than an algorithm which delivers a good solution with an equal
probability to produce a poor solution. Conventionally, variability is measured by the standard devi-
ation and the corresponding interquartile ranges. Therefore, a boxplot is used to represent the
variability, which displays the lower quartile, median, upper quartile, whiskers (dashed lines spanning
from top and bottom of the box for showing the stretch of the leftover data), and also the outliers with
a ‘þ ’ symbol. Figure 4 shows the boxplot of the best objective function values obtained from ten trial
runs for each of the four algorithms. It can be noted from the figure that the SaDE algorithm is sub-
jected to lowest variability (interquartile range) and best objective function value (lowest median) in
the ten different trial runs, suggesting a robust performance of SaDE as compared to the other EAs.
The GA was associated with a higher spread in the final objective function values. The DE algorithm
is found to have a lower spread but higher objective function values (RMSE). The SCE algorithm was
associated with higher variability and worst optimal values. Earlier successful applications of the SCE
Table 2 | The results of p-values obtained for statistical significance tests to assess the comparative performance of SaDE with
the GA, SCE and DE algorithms via the two-sample t-test and Wilcoxon rank-sum tests

Statistical test DE GA SCE SaDE

Two-sample t-test

DE –

GA 0.221 –

SCE 0.153 0.005 –

SaDE 1.2� 10�5 0.012 9.7� 10�5 –

Wilcoxon rank-sum test

DE –

GA 0.140 –

SCE 0.212 0.045 –

SaDE 1.8� 10�4 0.017 1.8� 10�4 –

Note: the values in italics indicate statistical difference exists at the 5% significance level.
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algorithm for hydrological model calibration had used very large numbers (often in excess of 10,000)
of model evaluations to obtain the final solution (Tolson & Shoemaker 2007). However, with a lim-
ited number of model evaluations, the SCE algorithm could not reach the global (or near-global)
optimal solution, as reported by previous studies (Tolson & Shoemaker 2007; Arsenault et al.
2014; Qin et al. 2016). Thus, restrictions on the number of model evaluations may have led to the
poor performance of the SCE algorithm in the current application.
Figure 5 shows a comparison of the empirical cumulative distribution function plots between the

four algorithms. The empirical cumulative distribution function (as used by Devore (2004)) for the
different algorithms provides a useful comparison of the measure of the reliability of the algorithms.
It is an approximation of the original cumulative distribution function and states the occurrence fre-
quency of best objective function values below some reference value. In Figure 5, the empirical
probabilities (or the occurrence frequencies) are the plotting positions attributed to the best objective
function values of the four algorithms from their ten trial runs using r/(nþ 1), where r and n stand for
the rank of ordered best objective value and the number of data points respectively. Therefore, for ten
trial runs, there will be ten data points, and the empirical cumulative distribution will be in the range
of 0.09–0.91. The algorithm with a higher probability (or approximately vertical empirical cumulative
distribution plot) at lower objective function values would be preferred in the case of the minimization
Figure 5 | Comparison of the empirical cumulative distribution for the best objective function values (RMSE) resulted from 10
trial runs using GA, SCE, DE, and SaDE algorithms.
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problem. Based on such criteria, the SaDE algorithm is the best among the four algorithms, as it holds
a nearly steep slope with a sense of smaller spread, and also as it occupies the position farthest left
thus indicating its capability of producing smaller objective function values than other algorithms.
Both the SCE and DE algorithms are positioned farther right to SaDE and have flattened out
curves, suggesting that they are less reliable. It can be noted that GA starts at the farthest left but flat-
tens out for higher cumulative probabilities, indicating that it is less reliable as it produces poor results
in some trial runs.
This study also analysed the parameter equifinality (which concerns the principle that in open sys-

tems a given end state can be reached by several possible ways) of different EAs in their application to
VIC model calibration. All the parameter sets within 1% of the optimal RMSE values are considered
equifinal (Nemri & Kinnard 2019), see Figure 6. From the dispersion of the equifinal parameters in
Figure 6, it can be noted that different parameters are associated with different degrees of equifinality.
Figure 6 | Boxplots of equifinal parameters set for the VIC model calibration using GA, SCE, DE, and SaDE algorithms.
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For example, parameters such as bi, Dm and Ds are more identifiable due to their smaller variability as
compared to the parameters such as Ks1, Ks2, Ks3, exp1 and exp3. Different algorithms also have
shown varying degrees of equifinality, as can be seen from Figure 6. Overall, the SaDE and GA
methods have formed a more homogenous parameter distribution with reduced dispersion in their
equifinal parameter sets.

Runoff estimation

The earlier assessment of the algorithmic performance was carried out in terms of efficiency, variabil-
ity, and reliability with a limited number of function evaluations after examining their ability to attain
an optimal solution. In this section, an effort was made to evaluate the performance of different cali-
bration algorithms for reliable runoff simulation. Four performance measures (Ens, R

2, PBIAS, and
mean of simulated flow) were computed by adopting the best parameter values obtained from the
ten optimization trial runs with 500 function evaluations. It can be seen from Table 3 that the
mean daily runoff was better estimated with the SaDE algorithm during both calibration and vali-
dation periods. The SaDE overestimated the mean daily flow by 1.55% during calibration, while
GA, SCE and DE overestimated it by 2.07, 5.18, and 2.59%, respectively. For validation, the GA,
SCE and DE underestimated the mean daily flow by 7.35, 5.39, and 6.37%, respectively, whereas
SaDE overestimated it by 1.47%. The Ens, R

2, and PBIAS for SaDE during calibration were 0.87,
0.93, and –1.75, respectively, which were more favourable than the other three algorithms. For the
validation period, Ens and R2 were nearly the same for all the algorithms, but PBIAS pointed towards
the marginally better performance of the SaDE. Earlier studies recommended that for a satisfactory
model simulation its Ens must be greater 0.5, R2 should be higher than 0.6, and PBIAS less than or
equal to 25% (Santhi et al. 2001; Moriasi et al. 2007). Based on the recommendations from past
studies, it can be inferred that all the algorithms performed satisfactorily in streamflow simulation,
although the overall performance of the SaDE was comparatively better than the other three
algorithms.
Table 3 | Statistical performance measures for the simulated streamflow with the best DE, GA, SCE, and SaDE estimated
parameters of the VIC model

Simulation period Algorithm Qs (m3/s) Ens R2 PBIAS

Calibration (mean observed flow¼ 193 m3/s) GA 197 0.86 0.92 –2.10
SCE 198 0.82 0.90 –2.63
DE 203 0.82 0.91 –5.15
SaDE 196 0.87 0.93 –1.75

Validation (mean observed flow¼ 204 m3/s) GA 189 0.86 0.92 7.28
SCE 191 0.86 0.93 2.46
DE 193 0.85 0.93 5.32
SaDE 207 0.86 0.93 –1.51

Note: Values in italics signify best among all the algorithms.
The calibrated values of the VIC model parameters (using the SaDE algorithm) are given in Table 4.
These parameter values were obtained from the best solution of the SaDE algorithm at the end of 500
evaluations from ten optimization trial runs. The VIC model simulated flows using those calibrated
parameter values is compared with the observed flows in Figure 7. It is clear from the figure that
most of the time the simulated flows closely match the observed flows. Different streamflow charac-
teristics are generally represented by the different flow signals (i.e. high flow, low flow, and medium
flow) from the hydrograph. Therefore, to obtain a comprehensive idea about the different streamflow
characteristics, the effect of SaDE based automatic calibration on different flow signals was analysed.
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Table 4 | Details of the VIC model parameters selected from calibration using SaDE

Parameter Optimal value Parameter Optimal value

bi 0.24 Ks1 5,936.10

Dm 30.00 Ks2 3,239.10

Ds 0.16 Ks3 3,403.70

Ws 0.95 exp1 21.58

d1 0.28 exp2 29.72

d2 1.47 exp3 16.46

d3 0.84

Figure 7 | Comparison of SaDE calibrated VIC model simulated flows with observed flows during calibration and validation
periods.
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Based on the exceedance probability, the flow signals were categorised into the low flow (exceedance
probability �90%), medium flow (10%, exceedance probability ,90%), and high flow (exceedance
probability �10%) signals. Figure 8 shows the comparison of VIC model simulated flows (with cali-
bration parameters obtained using the SaDE) with the observed flows for different flow signals. It
is clear from Figure 8(a) that the daily observed and simulated flows during low flow periods were
very poorly associated (R2¼ 0.14) as the model tends to overestimate the majority of low flow signals.
Figure 8 | Scatter plots of observed vs simulated flows from the SaDE calibrated VIC model, for (a) low flows, (b) medium flows,
and (c) high flows.
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In contrast, for the medium flows, the agreement between the simulated and observed flows was high
(R2¼ 0.91), but both had some over- and underestimations (Figure 8(b). The simulated high flows
were also predicted with good accuracy (R2¼ 0.84) along with a few underestimations (Figure 8(c).
Overall, the VIC model simulations for high and medium flows showed good agreement with the
observed flows, while the low flows were poorly estimated by the VIC model.
To further investigate the behaviour of the modelled flow values at different flow levels, perform-

ance measures of the modelled streamflow were computed after partitioning the streamflow series
into wet and dry season flows. The months of June–November, where the observed monthly flows
had exceedance probability less than 50%, were considered as the wet season, and the rest of the
months were considered as the dry season. The wet season contained more than 91% of the
annual average streamflow in the study area. Table 5 represents the comparison of three performance
measures (Ens, R

2, and PBIAS) for wet and dry seasons. The wet season exhibited a similar perform-
ance to the whole time period (Table 3) in terms of Ens and R2 during both calibration and validation
periods. In Table 5, small positive biases were found for the wet season. In contrast, a large negative
bias was found for calibration during the dry season. Overall, the performance measured during the
dry season was very poor compared to those for the wet season and also for the entire period. Similar
low performances of the estimated streamflows during dry periods (even after the rigorous model cali-
bration) were reported in several past studies (Gan et al. 1997; Croke et al. 2004; Kim 2015).
However, the limitation of accurate streamflow estimation in dry conditions may not be a conse-
quence of the particular choice of a calibration algorithm, rather it may be linked to the
inadequate model structure and parameterization of the hydrological model, selection of calibration
data length, and in many instances due to the choice of the objective function (Kim 2015).
Table 5 | Performance of the SaDE based calibrated streamflows for dry and wet periods during VIC model calibration and
validation

Calibration Validation

Wet period Dry period Wet period Dry period

Ens 0.87 0.09 0.88 –0.21

R2 0.93 0.63 0.94 0.43

PBIAS 3.12 –24.99 5.02 –1.84
CONCLUSIONS

Hydrological models mimic the behaviour of hydrological processes in catchments, and their reliable
results help in gaining enhanced knowledge of various environmental processes. Calibration of a
physically-based hydrological model is a challenging task because of the large number of unknown
parameters, equifinality of parameter sets, and the computational cost for their simulation that
restricts the number of model runs that are required for the calibration. In this study, the SaDE algor-
ithm is presented for the automatic calibration of a physically-based VIC hydrological model in the
upper Tungabhadra river basin of India. The SaDE eliminates the need for fine-tuning of control par-
ameters (i.e. mutation factor F and crossover rate CR) of DE by implementing an automatic self-
adapting process, which helps in saving a considerable amount of time and computational budget
in finding optimal parameters. Further, apart from SaDE, three more evolutionary algorithms,
namely GA, SCE, and DE algorithms, are applied for calibration of VIC model parameters, and
the results of SaDE are compared with those from the GA, SCE and DE algorithms. The performance
of algorithms was evaluated using standard performance measures subject to a limited computational
budget (or a number of function evaluations) and assessed the usefulness of the SaDE approach.
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Analysis from the results of the study revealed that the SaDE is a powerful tool for hydrological model
calibration and it can produce significantly better performance than the other three algorithms.Here, the
main advantage of the SaDEmethod is that it eliminates the tedious and computationally demanding task
of parameter fine-tuning. The empirical CDF plots prepared for reliability assessment of the algorithm
clearly indicated the advantage of the SaDE over the other algorithms during the calibration and vali-
dation of the VIC model. Moreover, the SaDE algorithm leads to the smallest standard deviation and
interquartile range (evaluated based on different trial runs of fitness/objective values), which reveals its
consistent precedence over the other three algorithms. Although the problem of ‘equifinality’ is found
in the model calibration, it can be expected that the equifinality in parameter space will be less pro-
nounced when using the SaDE method. The results of this study also demonstrate the superior
performance of SaDE in the case of a limited number of model evaluations. If an adequate number of
function evaluations are allowed, then SaDE is found to achieve global optimal solutions like other
EAs, but it achieves much faster than the GA and SCE algorithms. A lesser number of function evalu-
ations is a major advantage in hydrological modelling applications where time and computational
constraints prevent higher model evaluations and recurrent runs of the algorithm. Results from this
study also showed that SaDE produces a slightly better performance overall (in terms of ENS, R

2, and
PBIAS statistics) during both model calibration and validation periods for streamflow simulation.
Thus, from the results of the study, it can be inferred that obtaining ‘good’ solutions with the SaDE

is straightforward and efficient since it does not require a prior parametric study and it is also com-
putationally inexpensive compared to the other EAs. Moreover, the SaDE algorithm is very simple
and so it can be easily implemented in any programming language consistent with the operating
environment of the model subjected to calibration. Therefore, the study recommends SaDE as a
potential tool for calibration of complex hydrological models.
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