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Abstract

Modelling of runoff is a significant practice in water resources engineering. Therefore, discovering consistent and
advanced methods for prediction of runoff is crucial for hydrologic processes. Here, a narrative integrated intelli-
gence model attached with PSR (phase space reconstruction) is anticipated to estimate runoff for five
watersheds of Balangir, Odisha, India. Monthly monsoon precipitation, temperature, humidity data of five water-
sheds over 28 years (1990–2017) are employed and validated. Here, the proposed model is an integration of
support vector machine (SVM) with firefly algorithm (FFA) and PSR. Various indices such as NSE (Nash–Sutcliffe),
RMSE (root mean square error) and WI (Willmott’s index) are used to find the performance of the model. The
developed PSR-SVM-FFA model demonstrates pre-eminent WI value ranging from 0.97 to 0.98 while the SVM
and SVM-FFA models encompass 0.92 to 0.93 and 0.94 to 0.95, respectively. Also, an assessment of data
from the suggested model is schemed and validated. The proposed PSR-SVM-FFA model gives better accuracy
results and error limiting up to 2–3%.
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Highlights

• The most relevant techniques are used for performing the output of rainfall-runoff process at a single outlet.

The advances gained from a modelling point of view are considered and discussed.

• The models developed using three techniques are support vector machine (SVM), support vector machine with

firefly algorithm (SVM-FFA) and support vector machine and firefly algorithm with Phase space reconstruction

(PSR-SVM-FFA) in the study.

• The study is different from previous studies by including and comparing two new techniques, SVM-FFA and PSR-

SVM-FFA, while past research has used hybridization of SVM for predicting runoff in a watershed.

• Interaction of all techniques along with five different models is presented.

• The model proposed reasonably predicts the runoff at a single outlet and improves the method of measuring

runoff without the detailed study for all sub-outlets of the watershed.
INTRODUCTION

Improvement in water resources is essential for balancing water demand around the globe. Due to the
complex nature and uncertainty in water parameters, traditional methods like statistical method,
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Dickens formula (1865), Ryves formula (1984), and Khosla formula (1960) are insufficient to under-
stand the cycle of rainfall-runoff (Das 2009). Innovative computational algorithms and their
application to water resources engineering are necessary to understand the behaviour of the water
cycle in the context of climate change. Computational algorithms in view of modern techniques
like FFA, SVM and PSR are important for engineering applications. Attempts have also been made
to apply these techniques to water resources engineering (Tayfur 2014).
Tabari et al. (2012) employed the SVM, ANFIS (adaptive neuro-fuzzy inference system), MLR

(multiple linear regression) method utilizing six climate data variables as inputs to estimate
evapotranspiration at Nozheh station, Iran. Outcomes suggested that SVM and ANFIS models per-
form better with greater precision than those of regression and climate-based models. Baydaroglu
& Kocak (2014) applied support vector regression (SVR) to envisage water loss using solar radiation,
relative humidity, wind speed, evaporation and temperature as input. SVR helps in predicting evapor-
ation effectively since it has a good generalization ability with greater determination coefficients of 83
and 97% for univariate and multivariate time series entrenching. Raghavendra & Deka (2014) in their
review found that SVM is more suitable for prediction than other techniques pertinent to hydrology.
Cha et al. (2014) projected the SVM-FFA model for more precise forecast of malaria incidences in the
Jodhpur and Bikaner area. Performance of the projected hybrid model was compared with ANN,
autoregressive moving average as well as SVM and results indicated that the proposed integrated
model provides forecasts with better accuracy as compared to traditional methods. The FNN (feed
forward neural network) technique was used for monthly stream flow forecasting for a period of 53
years in the United States by Vignesh et al. (2015). Obtained outcomes are valuable in identifying suit-
able model intricacy at discrete stations, arrangements across regions and sub-regions, interpolating
and extrapolating data, and classifying catchments. SVM-FFA and SVM-wavelet were used to evaluate
precipitation trends in 29 meteorological stations in Serbia from 1946 to 2012 by Gocic et al. (2016).
Estimation and prediction outcomes of hybrid models were contrasted and results showed that the
SVM-wavelet approach gives improved prediction accuracy and ability to generalize. Moghaddam
et al. (2016) implemented SVM-FFA for predicting the exhaustion lifetime of polyethylene terephthal-
ate (PET) reformed asphalt mixture taking PET percentages, stress levels and environmental
temperatures as inputs. Prediction results by SVM-FFA were compared against ANN and genetic pro-
gramming (GP) and it was found that the hybrid model performs better. Al-Shammari et al. (2016)
projected a hybrid method integrating SVM with FFA for predicting daily dew point temperature
(Tdew) for an Iranian city and performance of the hybrid model is compared to SVM, ANN and
GP. They observed that SVM-FFA is certainly very efficient in predicting Tdew with better accuracy
and consistency. Integrated PSR–ANN and ANN techniques were utilized to predict daily river
flow on river gauging stations in the USA by Delafrouz et al. (2017). The outcomes of PSR–ANN,
ANN and gene expression programming models were compared and it was found that the projected
hybrid model gives the best prediction accuracy for daily river flow. Mehr et al. (2018) employed inte-
gration of FFA and SVM for rainfall forecasting on a monthly basis at Tabriz and Urmia stations, Iran.
The effectiveness of the hybrid model was cross-checked with SVR and GP-based forecasting models
and it was found that the SVM-FFA model performs well with promising accuracy in terms of rainfall
forecasting. Ghose & Samantaray (2019) employed LRNN (layer recurrent NN), RBFN (radial basis
function NN) and FFBPN (feed forward back propagation NN) to evaluate runoff as a loss function of
evapotranspiration, temperature and precipitation. Outcomes revealed that performance of the
LRNN model is best as compared to FFBPN and RBFN for predicting runoff in the watershed
which helps in planning, designing and managing hydraulic structures in the neighbourhood of the
watershed. Zaini et al. (2018) used an SVM model and also a hybridized SVM-PSO (particle
swarm optimization) model to scheme daily stream flow at Upper Bertam watershed, Malaysia. Hybri-
dized models SVM-PSO1 and SVM-PSO2 perform best in comparison to SVM1 and SVM2 at
forecasting river flow 1–7 days ahead. Tao et al. (2018) used SVM and SVM-FFA to anticipate rainfall
a.silverchair.com/h2open/article-pdf/3/1/256/863392/h2oj0030256.pdf
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at Chhattisgarh. The proposed hybrid model significantly improved forecasting accuracy and can also
be used for monthly rainfall forecasting in provincial areas of India. Gandomi et al. (2011) utilized
FFA to solve mixed variable structural optimization problems and also the implications of FFA are
thoroughly analysed in comparison with PSO, GA, simulated annealing for future research. Ji &
Sun (2013) presented a method for multitasking multiple classes of SVM on the basis of minimizing
regularization functions and found it to be best among other multitask learning methods. Shamshir-
band et al. (2015) proposed a hybrid SVM-FFA model for estimating monthly mean horizontal global
solar radiation (HGSR). Performance of the hybrid model is evaluated by comparing it with ANN, GP
and ARMA (autoregressive moving average) models and results revealed that the projected hybrid
model performs best.
Several researchers have found different individual algorithms for predicting runoff. Some have also

developed optimization methods and least integrated methods to predict runoff. Thus, an attempt has
been made to think about the hybrid model via integral algorithms. The objective of this research is to
compare results of the SVM-FFA, PSR-SVM-FFAmodel with the SVM and empirical models to tune up
the magnitude of runoff for controlling flood in the region. Basically, it is applicable for efficient plan-
ning and management of water resources such as flood control and management of a watershed.
STUDY AREA

Balangir district is located in the west part of Odisha, India, with an area of 5,165 km2, as shown in
Figure 1. It lies between the latitudes of 20°59000″ and longitudes of 83°32022″. It has an average
elevation of 115 metres (377 feet). The watershed is located towards the mid-north edge of Balangir
district. Five gauging stations, Loisinga, Balangir, Tushura, Saintala and Patnagarh, are considered in
the present research.
Figure 1 | Schematic diagram of the proposed watershed.
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Physical and statistical characteristics of the gauging stations are described in Table 1. Here, predic-
tion of runoff is assessed by taking the dataset from 1990 to 2017. Mean monthly precipitation and
temperature data for the monsoon months (May to October) from the period 1990–2017, spanning
over 28 years, are obtained from IMD (India Meteorological Department) Bhubaneswar. Runoff
data are collected from the soil conservation office, Bolangir. Here, the runoff data are computed
using Khosla’s empirical equation to understand the coherence between developed empirical data
and observed data collected from that department.
Table 1 | Physical and statistical characteristics of five stations in Balangir, Odisha, India

Station name Drainage area (km2) Latitude Longitude Elevation (m) Mean rainfall (mm) Min.–Max. rainfall (mm)

Loisinga 317.6 20.86N 83.50E 162 91.22 7.83–158.8

Balangir 386.98 20.7N 83.5E 115 87.82 7.93–157.29

Deogaon 432.01 20.71N 83.49E 148 93.69 7.28–155.26

Saintala 454.43 20.26N 83.20E 182 87.795 7.45–159.56

Patnagarh 591.45 20.72N 83.15E 243 87.23 7.89–151.34
METHODOLOGY

Khosla formula

Khosla considered precipitation, discharge and temperature data for different catchments in India
and the USA to arrive at a pragmatic connection as follows in Equation (1). It is circuitously anchored
in the water-balance perception and mean monthly temperature to replicate losses due to evapotran-
spiration:

Rm ¼ Pm � Lm (1)

Lm ¼ 0:48 Tm, for Tm . 4:5 �C

where Rm is monthly runoff, Pm is monthly rainfall, Lm is monthly losses and Tm is mean monthly
temperature of the catchment.
Support vector machine model

A technique with statistical learning theory and promising empirical results for recognition of pattern
with high dimension data to avoid error with decision boundary using training in terms of support
vector is known as a support vector machine (Cortes & Vapnik 1995).
A graphical description of the SVM model is shown in Figure 2. The principles of SVM include stat-

istical learning known as structural risk minimization, which affords a higher boundary for
generalization error of a classifier (R) concerning training error (Re), model complexity (h) and
number of training examples (N ) to evaluate probability of error and is defined as (Chen et al.
2018; Thanh & Kappas 2018; Wang et al. 2018a):

R � Re þ w
h
N

,
logh
N

� �
(2)

where w is monotonic increasing function of the model complexity.
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Figure 2 | Graphical description of SVM model.
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This is enviable when designing a linear classifier which maximizes margins of their decision
boundaries to minimize error. In this regard, SVM is an effective linear classifier which searches a
hyper plane with the largest margin called the maximal marginal classifier. The decision boundary
of the linear classifier is:

w� xþ b ¼ 0 (3)

The training phase of SVM involves estimation of constraints weight (w), bias (b) of decision bound-
ary from the training data set. Parameters are preferred with the below conditions:

w� xi þ b � 1, if yi ¼ 1

w� xi þ b � �1, if yi ¼ �1 (4)

The objective function is the Lagrangian multiplier and denoted as:

Lp ¼ 1
2

wk k2�
XN
i¼1

li{yi(w� xi þ b)� 1} (5)

The linear programming is to be utilized through Karush–Kuhn–Tucker (KKT) conditions and the
KKT condition is:

li � 0

li{yi(w� xi þ b)� 1} ¼ 0 (6)
Integration of SVM with FFA model fitness

The FFA is a natural algorithm based on the blinking manners of fireflies (Yang 2009; Abd-Elazim &
Ali 2018; Lieu et al. 2018; Wang et al. 2018b, 2018c). Since the complex nature of fireflies induces
global communication among swarming particles, effective multi-objective optimization is necessary
to recognize the multifaceted algorithm of FFA. In this algorithm, fireflies use flashing light to search
for mates, to attract potential prey for protection from their predators. In order to achieve efficient
optimal solutions, flashing light intensity induces fireflies to a more attractive position associated
with objective function of the problem.
a.silverchair.com/h2open/article-pdf/3/1/256/863392/h2oj0030256.pdf
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There are some components in FFA, such as distance, attractiveness and movement.

Euclidian distance

Euclidian distance is the distance between two fireflies i and j at locations ui and uj, defined as Eucli-
dean distance (rij) applying Equation (7), where ui,k is the k

th factor of spatial coordinate ui of i
th
firefly

and d is dimension number:

rij ¼ ui � uj
�� �� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXd
k¼1

(ui,k � uj,k)
2

vuut (7)
Attractiveness

Attractiveness task of a firefly is revealed in Equation (8):

br ¼ b0 � exp(�grm), m � 1 (8)
Movement

Progress of firefly i is towards an extra striking firefly j and is specified by Equation (9):

updated ui ¼ ui þ b0 � exp (gr2ij)� (uj � ui)þ a r � 1
2

� �
(9)

where ui is the current position of firefly, b0 � exp (gr2ij)� (uj � ui) is active for allowing a firefly’s

attractiveness to light intensity and a r � 1
2

� �
is applied for random movement of a firefly.

The settings of firefly algorithm (FA) parameters: g (light absorption coefficient)¼ 1.0, a (randomiz-
ation parameter)¼ 0.3, b0 (attractiveness value)¼ 1.0 and random number generator consistently
disseminated in space [0, 1]¼ 0.2. A flowchart of the SVM-FFA model is shown in Figure 3.

Objective function

F (Y), Y¼ (Y1, Y2, Y3, ………..,Yk)
Z

Fireflies’ initialization, Yj(j¼ 1,2,3,4,………….m)
Concentration of light Lj at Yj, f(Yj)
Light preoccupation coefficient β
While z,maximum generation do

For j¼ 1:m all m fireflies do
For i¼ 1:i all m fireflies do

If Li. Lj then
Transfer firefly j towards i in k dimension

End if
Attractiveness diverges with distance r through exp[-βr]
Calculate high result and update intensity of light

End for
End for
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Evaluate best value
End while
Final result and conception

Integration of PSR coupled with SVM-FFA model

Illustration of hybrid extravagance model is demonstrated in Figure 4. The models involve the sub-
sequent modelling process (Dutta et al. 2018; Fan et al. 2018; Hajiloo et al. 2018; Sun & Wang 2018).
Figure 4 | Graphical representation of hybrid PSR-SVM-FFA.
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(i) First phase, optimal τ and m is established to accomplish MIF and FFN approaches for embattled
index phase space reconstruction. In this manner, phase space will converge from input aspects
and abstract critical dynamics of chaotic time series.

(ii) Second phase, input matrix is assembled rooted in several dimensions Xt, Xt�τ, Xt�2τ, …, Xt�(m�1)τ

by considering optimal τ and m, for targeted value Xtþ1. According to the PSR technique, an input
matrix is proposed (Sivakumar et al. 2001).

(iii) Third phase, the hybrid SVM-FFA model is fed by the produced matrix using phase space signal.
Objective function

For univariate time signal X1 ¼ (X1,1, X1,2, . . . . . . . . . . . . . . . :, X1,N)
T , PSR is

Xr
1i ¼ (x1,i,x1,iþt1,............x1,iþ(m1�1)t1 ), i ¼ 1, 2, . . . . . . . . . . . . . . . . . . N � (m1 � 1)t1

where, N is time series, t1 is lag and m1 is embedding dimension for X1.
For multivariate time series,

X ¼ [X1, X2, X3, . . . . . . . . .Xs] ¼

x1,1 . . . . . . . . . :xs,i
:
:
:
:

x1,N . . . . . . . . . . . . :xS,N

2
6666664

3
7777775

PSR computes the reconstruction for each time series:

Xr
1 ¼ (Xr

1,i, X
r
2,i, X

r
3,i . . . . . . . . . . . . :X

r
s,i) i ¼ 1, 2, 3, . . . . . . . . . . . .N � (max{mi}� 1)(max{ti})

s: measurement number.

Delay estimation

For delay, PSR allows average mutual information (AMI).
For reconstruction, time delay is first local lowest AMI.

AMI is computed as: AMI(T ) ¼
XN
i¼1

p(xi, xiþT )log2
p(xi, xiþT )
p(xi)p(xiþT )

� �

Τ¼ 1 [for max. lag].
Embedding dimension (ED) estimation

ED for PSR is appraised utilizing the false nearest neighbour (FNN) algorithm. For I point at d dimen-
sion, points Xr

i and adjacent point Xr*
I in reconstructed phase space {Xr

i}, i¼ 1:N, are false neighbours

if

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

i (dþ 1)� R2
1(d)

R2
1(d)

s
. distance threshold where, R2

1(d) ¼ kXr
i �Xr�

i k2 is distance metric, d is

smallest value; Pfnn , per cent false neighbours and Pfnn is ratio of FNN points to total PSR quantity.
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Processing and preparation of data

Humidity, temperature and monthly average rainfall are composed of data from the meteorological
department of India for a season of monsoon months (May to October) for 1990–2017. Data from
Table 2 | Input constraints for SVM, SVM-FFA model

Input Model name (SVM) Model name (SVM-FFA)

Qt�1 SVM1 SVMI-FFA

Qt�1, Qt�2 SVM2 SVM2-FFA

Qt�1, Qt�2, Qt�3 SVM3 SVM3-FFA

Qt�1, Qt�2, Qt�3, Qt�4 SVM4 SVM4-FFA

Qt�1, Qt�2, Qt�3, Qt�4, Qt�5 SVM5 SVM5-FFA

where, Qt�1 is one-month lag runoff, Qt�2 is two-month lag runoff, Qt�3 is three-month lag runoff, Qt�4 is four-month lag runoff and Qt�5 is five-month lag runoff.

Figure 5 | Estimated mean monthly runoff of monsoon season for proposed watershed. (Continued.)
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1990 to 2009 are employed for training and from 2010 to 2017 are considered for testing the model.
Daily data are transformed into monthly data, which finally helps in training and testing the model.
Subsequent runoff arrangements are employed as input (Table 2).
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Model performance evaluation

The indicators NSE, RMSE and WI are used to assess the performance of model efficiency. The
formulae can be articulated as:

NSE ¼ 1�
PN

i¼1 (Oi � Pi)
2PN

i¼1 (Oi �Oi)
2

" #
�1 , NS � 1 (10)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

(Pi �Oi)
2

vuut (11)

WI ¼ 1�
PN

i¼1 (Oi � Pi)
2PN

i¼1 (jPi �Oij þ jOi �Oij)2
" #

(12)

where, Oi and Pi are observed and predicted ith runoff and Oi is mean of observed runoff.
RESULTS AND DISCUSSION

Runoff is estimated by using the Khosla formula for five watersheds in the monsoon period (May–
October) for 1990–2017. A graphical representation of mean monthly runoff is presented in Figure 5.
The performances of the SVM model with different inputs for the five proposed watersheds are pre-

sented in Table 3. Three evaluating parameters, NSE, RMSE and WI, are estimated for both testing
and training phases as explained below.
Table 3 | Results of SVM model for runoff prediction

Positions Model

Training period Testing period

NSE RMSE WI NSE RMSE WI

Balangir SVMI 0.513 91.93 0.841 0.486 88.93 0.849
SVM2 0.548 87.17 0.857 0.509 85.48 0.864
SVM3 0.597 84.86 0.874 0.552 81.39 0.881
SVM4 0.642 80.05 0.869 0.601 77.91 0.886
SVM5 0.681 76.98 0.935 0.653 73.92 0.942

Loisinga SVMI 0.497 93.78 0.826 0.451 91.95 0.845
SVM2 0.518 89.42 0.831 0.486 88.12 0.857
SVM3 0.561 85.18 0.862 0.537 83.85 0.884
SVM4 0.598 77.04 0.886 0.552 75.93 0.905
SVM5 0.636 72.73 0.919 0.601 70.21 0.925

Patnagarh SVMI 0.505 92.75 0.818 0.478 90.68 0.832
SVM2 0.531 88.51 0.835 0.507 85.08 0.856
SVM3 0.574 84.94 0.862 0.541 80.59 0.881
SVM4 0.605 81.62 0.881 0.576 78.38 0.907
SVM5 0.648 76.83 0.927 0.613 73.41 0.931

Saintala SVMI 0.527 92.85 0.795 0.485 90.03 0.821
SVM2 0.551 88.22 0.829 0.517 86.62 0.857
SVM3 0.605 83.94 0.857 0.554 81.79 0.882
SVM4 0.663 79.05 0.874 0.617 75.91 0.914
SVM5 0.692 73.82 0.938 0.658 69.73 0.947

Deogaon SVMI 0.518 92.65 0.805 0.496 90.52 0.831
SVM2 0.547 88.91 0.826 0.501 86.01 0.852
SVM3 0.582 85.57 0.853 0.549 82.59 0.886
SVM4 0.621 81.48 0.882 0.584 78.71 0.918
SVM5 0.683 77.73 0.945 0.648 74.05 0.953

Bold font indicates best value of model performance.
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Among the five models, the SVM5 model shows the best result with WI 0.935 and 0.942 for training
and testing period, respectively, whileQt�1, Qt�2,Qt�3,Qt�4, Qt�5 are considered as input parameters for
Balangir watershed. For the remaining watersheds, model SVM5 gives best WI value for both phases out
of five simulations. In the case of the Loisinga watershed, the pre-eminent WI values for training and test-
ing periods are 0.919 and 0.925 for model SVM5. For the training phase at Patnagarh, Saintala and
Deogaon watersheds, principal WI values are 0.927, 0.938 and 0.945, respectively. The result for the
SVM-FFA model based on NSE, RMSE and WI for testing and training periods is given in Table 4.
Table 4 | Outcomes of SVM-FFA model for runoff prediction

Positions Model

Training period Testing period

NSE RMSE WI NSE RMSE WI

Balangir SVMI-FFA 0.694 89.71 0.846 0.673 86.48 0.859
SVM2-FFA 0.717 86.04 0.862 0.698 82.71 0.864
SVM3-FFA 0.759 80.54 0.899 0.736 79.03 0.903
SVM4-FFA 0.782 76.82 0.926 0.758 75.66 0.941
SVM5-FFA 0.815 74.34 0.965 0.791 70.72 0.971

Loisinga SVMI-FFA 0.681 90.55 0.835 0.662 90.55 0.841
SVM2-FFA 0.708 86.81 0.847 0.689 86.27 0.865
SVM3-FFA 0.746 82.59 0.892 0.716 80.91 0.901
SVM4-FFA 0.772 76.68 0.926 0.751 73.78 0.937
SVM5-FFA 0.807 70.39 0.958 0.783 68.49 0.961

Patnagarh SVMI-FFA 0.679 91.84 0.818 0.649 88.81 0.825
SVM2-FFA 0.692 87.96 0.858 0.662 83.96 0.864
SVM3-FFA 0.737 83.68 0.885 0.709 78.78 0.899
SVM4-FFA 0.769 78.17 0.929 0.726 75.93 0.937
SVM5-FFA 0.791 74.09 0.953 0.754 70.07 0.962

Saintala SVMI-FFA 0.688 90.38 0.825 0.648 88.81 0.836
SVM2-FFA 0.711 86.17 0.859 0.672 84.35 0.868
SVM3-FFA 0.745 81.04 0.907 0.705 79.16 0.913
SVM4-FFA 0.781 77.91 0.924 0.751 73.49 0.935
SVM5-FFA 0.813 70.55 0.955 0.793 67.88 0.966

Deogaon SVMI-FFA 0.693 90.01 0.848 0.654 89.28 0.855
SVM2-FFA 0.713 85.63 0.869 0.689 84.96 0.885
SVM3-FFA 0.759 83.86 0.914 0.723 80.81 0.929
SVM4-FFA 0.792 79.47 0.939 0.751 76.67 0,946
SVM5-FFA 0.828 74.28 0.961 0.779 70.11 0.974
Here five different models are used to estimate NSE, RMSE and WI value for five projected water-
sheds. When Qt�1, Qt�2, Qt�3, Qt�4, Qt�5 is used as input scenario, WI value provides the best result.
Considering Balangir, the best values for WI are 0.965 and 0.971 for the training and testing periods,
respectively. For the training phase, the WI values for Loisinga, Patnagarh, Saintala, Deogaon water-
shed are 0.958, 0.953, 0.955, 0.961, respectively. Similarly, the WI values of the testing phase are
0.968, 0.962, 0.966 and 0.974 for Loisinga, Patnagarh, Saintala and Deogaon watershed, respectively.
Results of the PSR-SVM-FFA model for both testing and training phases are presented in Table 5.
Table 5 | Optimal parameters of τ, m for proposed watersheds and results of PSR-SVM-FFA model for runoff prediction

Positions Optimal parameters of τ, m for PSR

Training period Testing period

NSE RMSE WI NSE RMSE WI

Balangir (m¼ 14, τ¼ 5) 0.905 43.74 0.984 0.874 42.27 0.985

Loisinga (m¼ 14, τ¼ 5) 0.938 39.18 0.970 0.908 37.96 0.967

Patnagarh (m¼ 14, τ¼ 5) 0.912 40.38 0.971 0.893 39.08 0.974

Saintala (m¼ 14, τ¼ 5) 0.897 37.66 0.972 0.869 36.11 0.976

Deogaon (m¼ 14, τ¼ 5) 0.923 41.82 0.982 0.897 40.35 0.988
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Assessment of results for recommended model

A comparison between the PSR-SVM-FFA, SVM-FFA and SVM models for testing of all projected
watersheds is presented in Figures 6–8. The pre-eminent WI values for SVM, SVM-FFA and PSR-
SVM-FFA models are 0.935, 0.965 and 0.984, correspondingly, for Balangir watershed. Similarly,
for Loisinga station, the paramount WI value is 0.919, 0.958 and 0.9702 for SVM, SVM-FFA and
Figure 6 | Best fit lines by SVM model at (a) Balangir, (b) Loisinga, (c) Patnagarh, (d) Saintala and (e) Deogaon watersheds during
training phase.
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Figure 7 | Best fit lines by SVM-FFA model at (a) Balangir, (b) Loisinga, (c) Patnagarh, (d) Saintala and (e) Deogaon watersheds
during training phase.
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PSR-SVM-FFA models, respectively. Patnagarh, Saintala and Deogaon illustrate values for the SVM
model of 0.9276, 0.9386 and 0.9459, respectively, during the testing phase. For the SVM-FFA model,
the excellent values of WI are 0.953, 0.955 and 0.961 with respect to Patnagarh, Saintala and Deo-
gaon. Similarly, the best values of the PSR-SVM-FFA model are 0.971, 0.972 and 0.982 for
Patnagarh, Saintala and Deogaon, respectively.
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Figure 8 | Best fit lines by PSR-SVM-FFA model at (a) Balangir, (b) Loisinga, (c) Patnagarh, (d) Saintala and (e) Deogaon
watersheds during training phase.
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The linear scale plot of actual versus predicted monthly runoff for proposed model of projected area
is shown in Figure 9. Results illustrate that estimated peak runoff is 141.208 mm, 142.313 mm and
149.272 mm for SVM, SVM-FFA and PSR-SVM-FFA against actual peak 157.22 mm for the Balangir
watershed. The approximated peak runoffs are 126.4107 mm, 147.091 mm and 154.655 mm for SVM,
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Figure 9 | Variation of measured runoff and predicted runoff at (a) Balangir, (b) Loisinga, (c) Patnagarh, (d) Saintala and (e)
Deogaon watersheds during training phase. (Continued.)
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SVM-FFA and PSR-SVM-FFA adjacent to the actual peak 158.8 mm for Loisinga division. For Patna-
garh gauging station, tangible runoff is 150.43 mm aligned with predicted runoff of 136.032 mm,
141.329 mm and 145.744 mm for SVM, SVM-FFA and PSR-SVM-FFA, respectively. Correspondingly,
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Figure 9 | Continued.
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for Saintala watershed, the observed maximum runoff is 156.34 mm associated with estimated runoff
of 151.728 mm, 147.522 mm and 144.911 mm for PSR-SVM-FFA, SVM-FFA and SVM, respectively.
Similarly, evaluated peak runoffs are 149.322 mm, 141.591 mm and 140.376 mm, for PSR-SVM-FFA,
SVM-FFA and SVM models with respect to genuine runoff of 154.23 mm for Deogaon watershed.

Comparison of best results

The SVM, SVM-FFA and PSR-SVM-FFA models are used to evaluate the performance of NSE, RMSE
and WI indictors for five gauging watersheds. Assessments of performance indicators are specified in
Table 6, which illustrates the efficiency of each model. Evaluating runoff is important and so the methods
used here are significant for demonstrating runoff information. Therefore, calculation of RMSE, WI and
NSE values are essential for predicting runoff. It is apparent that the PSR-SVM-FFA model is executed
well, comparably to SVM-FFA and SVM. Accuracy of models is evaluated and assessed.
Assessment of each model is demonstrated in Figure 10 in terms of linear bar scheme.
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Figure 10 | Comparison of performance index for proposed watershed.

Table 6 | Performance indices of different models for runoff forecasting

Stations

SVM SVM-FFA PSR-SVM-FFA

NSE RMSE WI NSE RMSE WI NSE RMSE WI

Balangir 0.653 73.92 0.942 0.791 70.72 0.971 0.874 42.27 0.985

Loisinga 0.601 70.21 0.925 0.783 68.49 0.961 0.908 37.96 0.967

Patnagarh 0.613 73.41 0.931 0.754 70.07 0.962 0.893 39.08 0.974

Saintala 0.658 69.73 0.947 0.793 67.88 0.966 0.869 36.11 0.976

Deogaon 0.648 74.05 0.953 0.779 70.11 0.974 0.897 40.35 0.988
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CONCLUSIONS

The efficiency of SVM, SVM-FFA and PSR-SVM-FFA approaches is explored for runoff prediction.
Five gauging stations in Bolangir district, India are used for execution over a period of 28 years.
The performance accuracy of PSR-SVM-FFA models is demonstrated in contrast to SVM-FFA and
SVM models. It is appraised with various statistical indicators, WI, NSE and RMSE parameters, to
reveal the projected PSR-SVM-FFA model is superior to SVM-FFA and SVM. It is observed that
there is a significant improvement in the performance of the selected hybrid model for predicting
the accuracy of each watershed. It is observed that the development of PSR coupled with the
hybrid SVM-FFA model is superior to SVM models because of comprehensive withdrawal of input
arrangements to produce targeted values. The PSR-SVM-FFA model is established to be a suitable
model for runoff forecasting in arid watersheds. The research carried out over five gauge watersheds
will help in the widespread good performance of non-gauging arid watersheds to predict runoff in
similar conditions. Also, the present research findings can be used for irrigation and water resources
engineering to design hydraulic structures regarding agriculture.
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