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Abstract

During the last three decades, the water resources engineering field has received a tremendous increase in the
development and use of meta-heuristic algorithms like evolutionary algorithms (EA) and swarm intelligence (SI)
algorithms for solving various kinds of optimization problems. The efficient design and operation of water
resource systems is a challenging task and requires solutions through optimization. Further, real-life water
resource management problems may involve several complexities like nonconvex, nonlinear and discontinuous
functions, discrete variables, a large number of equality and inequality constraints, and often associated with
multi-modal solutions. The objective function is not known analytically, and the conventional methods may
face difficulties in finding optimal solutions. The issues lead to the development of various types of heuristic
and meta-heuristic algorithms, which proved to be flexible and potential tools for solving several complex
water resources problems. This paper provides a review of state-of-the-art methods and their use in planning
and management of hydrological and water resources systems. It includes a brief overview of EAs (genetic algor-
ithms, differential evolution, evolutionary strategies, etc.) and SI algorithms (particle swarm optimization, ant
colony optimization, etc.), and applications in the areas of water distribution networks, water supply, and waste-
water systems, reservoir operation and irrigation systems, watershed management, parameter estimation of
hydrological models, urban drainage and sewer networks, and groundwater systems monitoring network
design and groundwater remediation. This paper also provides insights, challenges, and need for algorithmic
improvements and opportunities for future applications in the water resources field, in the face of rising problem
complexities and uncertainties.
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Highlights

• This paper reviews working principles and applications of evolutionary algorithms.

• This paper reviews working principles and applications of swarm intelligence algorithms.

• Discusses the issues and merits of various meta-heuristic algorithms.

• Provides insights and future research directions.
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Graphical Abstract
INTRODUCTION

Over the last few decades, there has been rising concern about global warming and associated
changes in rainfall, streamflows, and water availability in the river basins. Many regions are often
facing a shortage of water, as they receive rainfall in a particular season only, but the water demands
have to be satisfied for the entire year. There is an ever-increasing demand for water to meet the
diverse needs of society majorly for domestic, industrial, and agricultural purposes. Also, the efficient
use of limited water for different users imposes substantial difficulties with conflicting goals (Reddy &
Kumar 2006). Therefore, planning, construction, development, and operational activities of water
resources projects warrant for solutions using systematic procedures. They can help planners to
develop improved designs and operational systems, decide innovative management policies, improve
and calibrate simulation models, and resolve conflicts between conflicting stakeholders (Maier et al.
2014). The complexity of systems models in water resources engineering has increased tremendously,
with several socio-environmental–ecological issues and requires better alternative methods. In gen-
eral, systems aim to reduce the total system cost or failure risk, maximize net benefits by providing
an efficient design or operation policy. One of the important engineering tools that can be used in
such events is the optimization tool, which helps to find a set of values of the decision variables sub-
ject to the various constraints that will produce the desired optimum response for the chosen objective
function. As computers have become more powerful, the size and complexity of problems that can be
simulated and solved by optimization techniques have correspondingly expanded.
Today there are a variety of optimization techniques existing to tackle different issues in practical pro-

blems of water resources. Some techniques (like exact methods) may provide optimal solutions for
smaller problems, and others like meta-heuristic techniques may provide near-optimal solutions
while solving large-scale water resources problems. A taxonomy or classification of optimization
methods is given in Figure 1. But no single optimization method or algorithm is unanimously declared
as the winner that can be applied efficiently to all types of problems. The method chosen for any par-
ticular case will depend primarily on (Reddy & Kumar 2012): (1) complexity of the problem, and the
character of the objective function whether it is known explicitly, (2) the number and nature of the con-
straints, equality and inequality constraints, (3) the number of continuous and discrete variables, etc.
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Figure 1 | Taxonomy of optimization methods.
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The commonly used methods in water resources include linear programming (LP), dynamic pro-
gramming (DP), and nonlinear programming (NLP) methods. The LP method can guarantee
global-optimal solutions for linear problems and has wider applications in water resources, like for
irrigation planning, reservoir operation, conjunctive use planning, crop water allocation, seawater
intrusion, command area management, etc. (Yeh 1985). But many practical water resources appli-
cations may involve nonlinear functions in optimization modeling for solving the problems. So the
popular LP method cannot work in the case of models with nonlinear functions. The DP method
a.silverchair.com/h2open/article-pdf/3/1/135/863175/h2oj0030135.pdf
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(Bellman 1957) is popularly used for solving sequential decision making or multi-state decision-
making problems in water resources. It can handle any kind of functional relationships in the
model and can provide optimal solutions based on chosen interval values for the state and decision
variables. The main applications in water resources are water allocation, reservoir operation, capacity
expansion of water infrastructural facilities, water conveyance/shortest route-finding problems, etc.
(Yakowitz 1982). Being a complete enumeration technique, the DP faces computational difficulties
while solving large-size problems due to an increase in the number of state variables and the corre-
sponding discrete states, since in the DP method, a linear increase in the number of state variables
causes an exponential increase in computational time requirement. So, when DP is applied to
larger-size problems, it has the main hurdle of the ‘curse of dimensionality’. The gradient-based
NLP methods can solve problems with smooth nonlinear objectives and constraints. However, in
large and highly nonlinear models, these algorithms may fail to find feasible solutions or converge
to local optimum depending upon the degree of nonlinearity and an initial guess (Reddy & Kumar
2012). Hence, these traditional optimization techniques do not ensure global optimum and also
have other limitations like requirements of objective functions to be continuous functions and
easily differentiable, continuous variables, etc. Lack of ability to obtain a global optimum in the
case of traditional nonlinear-optimization techniques and intensity of computational requirements
in the case of dynamic programming motivated the search for new approaches, which would con-
glomerate efficiency and ability to find the global optimum.
In the recent past, nontraditional search and optimization methods based on natural and biological

evolution, also called bio-inspired techniques, such as EA and swarm intelligence (SI) algorithms have
been receiving increased attention in view of their potential as global optimization techniques for sol-
ving complex problems in water resources engineering (Reddy & Kumar 2012). Since, the first
applications of genetic algorithms in the water resources area (McKinney & Lin 1994; Ritzel et al.
1994) and their acceptance as optimizers have increased tremendously for several practical applications
in the water resources planning and management (Maier et al. 2014). However, there is a lack of syn-
thesis between common algorithm challenges, common problem behaviors, and needed improvements
for different key applications in the field. This paper will help the researchers to comprehend the algor-
ithms and their applications in the planning and management of water resource systems. In the
following first, the basic principles of EA and then some of the major types of EA are discussed.
EVOLUTIONARY ALGORITHMS

The EAs are rapidly expanding in the area of artificial intelligence research. During the last two dec-
ades, there has been a growing interest in algorithms, which are based on the principle of natural
evolution (i.e., the survival of the fittest) (Fogel et al. 1966). The EAs are the population-based
random search techniques guided with some heuristics (also called as meta-heuristic techniques).
The EAs consist of a population of individuals, each representing a search point in the space of feas-
ible solutions and is exposed to a collective learning process which proceeds from generation to
generation (Brownlee 2011). The population is randomly initialized and then subjected to the process
of selection, recombination, and mutation through several generations, such that the newly created
generations evolve towards more favorable regions of the search space. The progress in the search
is achieved by evaluating the fitness of all individuals in the population, selecting the individuals
with a better fitness value, and combining them to create new individuals with an increased likelihood
of improved fitness. After some generations, the program converges, and the best individual rep-
resents the optimum (or near-optimum) solution. There exist several EAs, but the basic structure of
any evolutionary algorithm is very much the same (Reddy & Kumar 2012). A sample structure is
shown in Figure 2.
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Figure 2 | The basic structure of an evolutionary algorithm (EA).
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The key steps involved in EA include:

1. Seeding the population using random generation
2. Evaluate the fitness of each individual in the population
3. Repeat the evolution steps until stopping criterion satisfied:

(a) Select the individuals for reproduction

(b)
(c)

a.silverch
Perform genetic operations to generate the offspring
Evaluate the individual fitness of the offspring
Replace the least fit individuals with new best fit individuals
(d)

4. Report the best solution of the fittest individual.

The two most important issues in the evolution process are population diversity and selective pressure.
These factors are strongly related to each other, i.e., an increase in the selective pressure decreases the
diversity of the population and vice versa. In other words, strong selective pressure ‘supports’ the prema-
ture convergence of the search and a weak selective pressure can make the search ineffective. Different
evolutionary techniques use different scaling methods and different selection schemes (e.g., probabilistic
or proportional selection, ranking, tournament) to strike a balance between these two issues. Further-
more, these algorithms can be easily combined with local search and other exact methods. In
addition, it is often straightforward to incorporate domain knowledge in the evolutionary operators
and in the seeding of the population. Moreover, EAs can handle problems with any combination of
the challenges that may be encountered in real-world applications, such as local optima and multiple
objectives. The popular EAs are such as genetic algorithm (GA), evolutionary strategies (ES), evolution-
ary programming (EP), differential evolution (DE), etc. Some studies also proposed hybrid systems by
combining features of more than one EA, and they exhibited significant results in several water resources
applications. In the following, a brief overview of popular EAs is given with an emphasis on showing how
the various types of algorithms differ, and the stages involved in defining each one.
air.com/h2open/article-pdf/3/1/135/863175/h2oj0030135.pdf
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Genetic algorithms

GA is the most popular algorithm of EAs. GA was inspired by population genetics (like heredity and
gene frequencies), and evolution at the population level besides the Mendelian understanding of the
structure (like chromosomes, genes, alleles) and process/mechanisms (like recombination and
mutation) (Fogel et al. 1966; Goldberg 1989). The basic GA was introduced by Holland (1975)
based on the binary encoding of the solution parameters, utilizes multi-point crossover and bit-flip
mutation for the evolution of the solutions. Later, several variants of GA (binary/real coding) with
a variety of genetic operators were developed and used in various water resources applications.
The working of GA involves random initialization of population (i.e., members are randomly gener-
ated to cover the entire search space uniformly) to start the process. Then, evaluation of the objective
functions, selection of parents, and applying genetic operations, recombination operator for creation
of offspring, and mutation operation for perturbing the individuals to produce a new population are
conducted. The steps are repeated until a termination condition is satisfied. A sample pseudo-code of
GA, describing the key steps in the algorithm, is depicted in Figure 3(a).
Recently, real-coded GA has been receiving more recognition and applications. There exist several

variants of crossover operators (arithmetic, simulated binary crossover, Blend crossover, etc.) and
Figure 3 | The pseudo-codes of evolutionary algorithms: (a) genetic algorithm (GA) and (b) differential evolution (DE).
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mutation operators (e.g., Gaussian, polynomial, random mutation, etc.). The basic selection operator
for GAs was proportional (or roulette-wheel) selection, but because of its known drawbacks of prema-
ture convergence to locally optimal solutions, tournament selection and ranking selection are
commonly used nowadays. For numerical optimization, a real-coded GA with Gaussian mutation,
arithmetic crossover, and tournament selection is a common choice. Moreover, an operation called
elitism is remarkably important for the performance of a GA. The usage of elitism is to leave a certain
proportion of the best individuals in every generation untouched by the variation operators. This is to
some extent, similar to evolution strategies, where a population of parents generates a new offspring
by a mutation in each iteration. The population of the next generation is created by selection from the
elite parents and newly created offspring. Nicklow et al. (2010) presented an overview of the GA
method and its applications in water resources management. By utilizing the strengths of EAs,
quick convergence, and yielding efficient solutions for single-objective optimization, researchers
also developed multi-objective algorithms by integrating Pareto optimality principles into single-
objective genetic algorithms, such as Nondominated Sorting Genetic Algorithms (NSGA-II; Deb
et al. 2002), Multi-objective Evolutionary Algorithm (MOEA; Reddy & Kumar 2006), etc. Reed
et al. (2013) discussed the principles of different MOEAs methods and their applications in water
resources.
Different variants of GA were developed over the years, like Micro GA (Krishnakumar 1990),

Cellular GA (Manderick & Speissens 1989), NSGA (Srinivas & Deb 1994), Contextual GA (Rocha
1995), Grouping GA (Falkenauer 1996), Quantum-inspired GA (Narayanan & Moore 1996), Linkage
learning GA (Harik 1997), Island GA (Whitley et al. 1998), NSGA-II (Deb et al. 2002), Interactive GA
(Takagi 2001), Jumping gene GA (Man et al. 2004), Dynamic rule-based GA (He & Hui 2006), Hier-
archical cellular GA (Janson et al. 2006), NSGAIII (Deb & Jain 2014), Tribe competition-based GA
(Ma & Xia 2017), Fluid GA (Jafari-Marandi & Smith 2017), Block-based GA (Tseng et al. 2018), etc.
Historical development of GA variants is also depicted in Figure 4. Although many of these variants
use the same basic principles of natural selection and survival of the fittest, they engage different strat-
egies and improved mechanisms in pursuit of better guidance of the search and aiding the enhanced
convergence of the method. For example, for multi-objective optimization, the initial version of
NSGA (proposed in 1994) was improved over the years and later proposed NSGA-II in 2002 and
NSGAIII in 2014 by incorporating additional mechanisms (like nondominated sorting, crowding dis-
tance measures, etc.) to handle different issues and complexities of multi-objective optimization
problems.

Differential evolution

Storn & Price (1996) proposed DE as a variant of EAs to achieve the goals of robustness in optimiz-
ation and quick convergence to an optimal solution for numerical optimization. The DE contrasts
from other EAs in the evolution process. Here mutation is the main operator, and the crossover is
the secondary operator for the generation of new solutions (Reddy & Kumar 2012). After random
initialization of the population, the objective functions are evaluated, and the following steps are
repeated until a termination condition is satisfied. At each generation, two operators, namely
mutation and crossover, are applied to each individual, to produce a new population. In DE, the
mutation is the main operator, and each individual is updated using a weighted difference of a
selected parent solution and crossover acts as background operator where the crossover is performed
on each of the decision variables with a small probability. The offspring replaces the parent only if it
improves the fitness value; otherwise, the parent is copied in the new population. The pseudo-code of
the DE algorithm is given in Figure 3(b).
There are several variants of DE, depending on the number of weighted differences between

solution vectors considered for perturbation, and the type of crossover operator (binary or
a.silverchair.com/h2open/article-pdf/3/1/135/863175/h2oj0030135.pdf



Figure 4 | Evolution of different evolutionary algorithms and their variants developed over the years, showing for genetic
algorithms (GA), differential evolution (DE), and evolution strategies (ES).
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exponential) used (Storn & Price 1997). For example, in DE/rand-to-best/1/bin variant of DE:
perturbation is made with the vector difference of best vector of the previous generation (best) and
current solution vector, plus single vector differences of two randomly chosen vectors (rand)
among the population. The DE variant uses the binomial (bin) variant of crossover operator, where
the crossover is performed on each of the decision variables whenever a randomly picked number
between 0 and 1 is within the crossover constant (CR) value. More details of DE can be found
elsewhere (Price et al. 2005; Das et al. 2016). To generate Pareto-optimal solutions for multi-objective
problems, researchers also developed different variants of multi-objective differential evolution
algorithms (MODE; Reddy & Kumar 2007c).
Different variants of DE were developed over the years, like DE (Storn & Price 1997), Self-adaptive

DE (SaDE; Qin & Suganthan 2005), jDE (Brest et al. 2006), Chaotic DE (Wang & Zhang 2007), adap-
tive DE with optional external archive (JADE; Zhang et al. 2009), ensemble of mutation strategies DE
(EPSDE; Mallipeddi et al. 2011), Composite DE (CoDE; Wang et al. 2011b), Multi-population DE (Yu
& Zhang 2011), Adaptive Cauchy DE (ACDE; Choi et al. 2013), improved JADE (Yang et al. 2014),
Extended adaptive Cauchy DE (Choi & Ahn 2014), jDErpo (Brest et al. 2014), Restart DE algorithm
with Local search mutation (RDEL; Ali 2014), Colonial competitive DE (Ghasemi et al. 2016),
Memory-based DE (Parouha & Das 2016), Stochastic Quasi-Gradient (SQG)-DE (Sala et al. 2017),
Unified DE (UDE; Trivedi et al. 2017), Opposition-based Compound Sinusoidal DE (OCSinDE;
Draa et al. 2019), etc. The evolution of various DE variants is also depicted in Figure 4. The different
variants of DE use different improved strategies and self-adaptive schemes for enhancing the conver-
gence and consistency in solutions for single (or multiple) objective optimization problems. More
details can be found in the referred papers.
a.silverchair.com/h2open/article-pdf/3/1/135/863175/h2oj0030135.pdf
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Evolutionary strategies

ES model evolution as a process of the adaptive behavior of the individual or in other words ES focus
mutational transformations that maintain the behavioral linkage between each parent and its off-
spring, respectively, at the level of the individual (Rechenberg 1973; Fogel 1994). ES uses real
variables and aims at numerical optimization. Because of that, the individuals incorporated could
be a set of strategic parameters. ES rely mainly on the mutation operator (Gaussian noise with
zero means). ES evolves by making a series of discrete adjustments (i.e., mutations) to an experimen-
tal structure. After each adjustment, the new structure, i.e., the offspring, is evaluated and compared to
the previous structure, i.e., the parent. The better of the two is then chosen and used in the next cycle.
As selection in this evolutionary cycle is made from one parent and one offspring, the algorithm is
known as a ‘(1þ 1)’ ES.
These two-membered ES modify (i.e., mutate) an n-dimensional real-valued vector x [ <n of object

variables by adding a normally distributed random variable with expectation zero and standard devi-
ation s to each of the object variables xi. The standard deviation is the same for all components of x,
i.e., 8i [ {1, 2 . . . , n}: x0i ¼ xi þ sNi(0, 1), where x0 is the offspring of x and Ni(0; 1) is the realization of
a normally distributed random variable with expectation 0 and standard deviation 1. Since the intro-
duction of ES, two additional strategies have been developed: (mþ l) and (m, l). Both of these ES
work on populations rather than single individuals and are referred to as multi-membered ES. A
(mþ l) ES creates l off-springs from m parents and selects the best m individuals from the combined
set of m parents plus l off-springs to make the next population. A (m, l) ES, on the other hand, creates
l off-springs and selects the best m individuals from the off-springs alone (for 1 � m � l).
Different variants of ES were developed over the years, like Derandomized Self-adaptation ES

(Ostermeier et al. 1994a), CSA-ES (Ostermeier et al. 1994b), CMA-ES (Hansen & Ostermeier
2001), Weighted multi-recombination ES (Arnold 2006), Meta-ES (Jung et al. 2007), Natural ES
(Wierstra et al. 2008), Exponential natural ES (Glasmachers et al. 2010), Limited memory CMA-
ES (Loshchilov 2014), Fitness inheritance CMA-ES (Liaw & Ting 2016), RS-CMSA ES (Ahrari
et al. 2017), MA-ES (Beyer & Sendhoff 2017), Weighted ES (Akimoto et al. 2018), etc. The historical
development of various ES variants is also depicted in Figure 4. The different variants use different
strategies/adaptation schemes for better evolution and enhanced performance of the ES algorithm
while solving a different kind of optimization problems. Apart from these, other EAs and their
hybrid variants were proposed and used in solving water resources problems.
SWARM INTELLIGENCE

The other class of meta-heuristic techniques that are gaining more popularity in recent times for water
resources optimization are SI techniques. The SI is based on the claims that intelligent human cogni-
tion derives from the interaction of individuals in a social environment. There exist several algorithms
that use this socio-cognition, which can be used to solve different optimization tasks (Bonabeau et al.
1999). The individual members of a swarm act without supervision, and each of these members has a
stochastic behavior due to their perception in the neighborhood. Swarms use their environment and
resources effectively by collective group intelligence. The key characteristic of a swarm system is self-
organization, which helps in evolving global level response by means of local-level interactions
(Reddy 2009). The SI methods are also called behaviorally inspired algorithms.
The main algorithms that fall under SI algorithms include particle swarm optimization (PSO), arti-

ficial bee colony (ABC), ant colony optimization (ACO), honey-bee mating optimization (HBMO),
firefly algorithms, etc. Similar to EAs, SI models are population-based iterative procedures. The
system is randomly initialized with a population of individuals. These individuals are then manipu-
lated and evolved over many iterations by way of mimicking the social behavior of insects or
a.silverchair.com/h2open/article-pdf/3/1/135/863175/h2oj0030135.pdf
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animals in an effort to find the optima. Unlike EAs, SI algorithms do not use evolutionary operators
such as recombination and mutation. Basically, a potential solution flies through the search space by
modifying itself according to its relationship with other individuals in the population and the environ-
ment (Reddy & Kumar 2012). The two algorithms that attracted the interest of many researchers and
received wider applications in water resources are PSO and ACO for solving a variety of problems.
PSO is based on the social behavior of fish schooling and bird flocking introduced by Eberhart &
Kennedy (1995) and has received wider recognition for numerical optimization with continuous vari-
ables whereas ACO is basically inspired by the foraging search behavior of real ants and their ability
to find shortest paths and was mainly used for discrete combinatorial optimization (Kennedy et al.
2001). In the following, a brief description of the basic principles and working of these two SI tech-
niques is presented.

Particle swarm optimization

PSO algorithm proposed by Eberhart & Kennedy (1995) is a population-based meta-heuristic search
technique that uses co-operative group intelligence concepts. Here the particle denotes individual in a
swarm. Each particle in a swarm behaves in a distributed way using its own or cognitive intelligence
and the collective or social (group) intelligence of the swarm. As such, if one particle discovers a good
path to food, the rest of the swarm will also be able to follow the good path instantly even if their
location is far away in the swarm. PSO shares many similarities with GA (Kumar & Reddy 2007).
PSOs are initialized with a population of random solutions and searches for optima by updating iter-
ations. However, in comparison to methods like GA, in PSO, no operators inspired by natural
evolution are applied to extract a new generation of candidate solutions. Instead, PSO relies on the
exchange of information between individuals (particles) of the population (swarm). In effect, each
particle adjusts its trajectory towards its own previous best position and towards the best previous pos-
ition attained by any other member of its neighborhood (usually the entire swarm) (Kennedy et al.
2001).
The PSO algorithm involves the following steps (Kumar & Reddy 2007): initialization of particles

with a random position and velocity vectors. Then the fitness of each particle is evaluated by the fitness
function. Two ‘best’ values are defined, the global and the personal bests. The global best is the highest
fitness value in an entire iteration (best solution so far), and the personal best is the highest fitness value
of a specific particle. Each particle is attracted to the location of the ‘best fitness achieved so far’ across
the whole swarm. In order to achieve this, a particle stores the previously reached ‘best’ positions in a
cognitive memory. The relative ‘pull’ of the global and the personal best is determined by the accelera-
tion constants called social and cognitive parameters. After this update, each particle is then re-
evaluated. If any fitness is greater than the global best, then the new position becomes the new global
best. If the particle’s fitness value is greater than the personal best, then the current value becomes
the new personal best. This procedure is repeated until the termination criteria are satisfied. The
pseudo-code of the PSO algorithm is given in Figure 5(a). Further to speed up the convergence and
to enhance the reliability in optimal solutions, different studies suggested additional mechanisms, like
elitist mutation strategy (Reddy & Kumar 2007a), combining PSO with other local search methods
and applied for different kinds of problems in water resources. By utilizing the strengths like faster con-
vergence and efficient optimal solutions for single-objective optimization, researchers also developed
multi-objective SI algorithms by integrating nondominance principles into single-objective PSO, for
example, elitist-mutated multi-objective PSO (EM-MOPSO; Reddy & Kumar 2007b), etc.
There were several variants of PSO algorithms, and their hybrid algorithms developed over the

years, like Constricted PSO (Shi & Eberhart 1998), Adaptive PSO (Clerc1999), Discrete PSO
(Clerc 2004), Elitist-mutated PSO (EMPSO) (Reddy 2006), EM-MOPSO (Reddy 2006), Dynamic nich-
ing PSO (Nickabadi et al. 2008), Adaptive PSO (Zhan et al. 2009), Co-evolutionary MOPSO (Goh
a.silverchair.com/h2open/article-pdf/3/1/135/863175/h2oj0030135.pdf



Figure 5 | The pseudo-codes of swarm intelligence algorithms: (a) particle swarm optimization (PSO), (b) ant colony optimiz-
ation (ACO).
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et al. 2010), Self-adaptive learning PSO (Wang et al. 2011a), Multi-dimensional PSO (Kiranyaz et al.
2011), Hybrid niching PSO (NPSO; Li et al. 2012), Hybrid PSO-Harmony Search (PSO-HS; Li et al.
2012), Hybrid PSO-Firefly Algorithm (PSO-FFA; Bhushan & Pillai 2013), etc. The historical develop-
ment of the PSO algorithm and its variants are depicted in Figure 6.

Ant colony optimization

The first ACO algorithm was inspired by the foraging behavior exhibited (pheromone trail laying and
training behavior) by ant colonies in their search for food (Dorigo et al. 1991). ACO was developed as
a population-based, heuristic search technique for the solution of difficult combinatorial and complex
problems. The main features of the ACO algorithm are pheromone trail and heuristic information
(Kumar & Reddy 2006). The working of the ACO algorithm involves the following phases. First,
the system is randomly initialized with a population of individuals. These individuals are then
manipulated over many iterations by using some guiding principles in their search, such as a prob-
ability function based on the relative weighting of pheromone intensity and heuristic information),
a.silverchair.com/h2open/article-pdf/3/1/135/863175/h2oj0030135.pdf



Figure 6 | Evolution of different swarm intelligence algorithms and their different variants developed over the years, showing
for particle swarm optimization (PSO), ant colony optimization (ACO), and artificial bee colony (ABC) and other meta-heuristics.
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in an effort to find the optima. At the end of each iteration, each of the ants adds pheromone to its
path (set of selected options). The amount of pheromone added is proportional to the quality of
the solution (for example, in the case of minimization problems, lower-cost solutions are better;
hence they receive more pheromone). The pseudo-code of the ACO algorithm, depicting the key
steps, is given in Figure 5(b).
An important characteristic of ACO one should be aware of is that it is a problem-dependent appli-

cation. In order to adopt ACO for application to a particular problem, it requires representation of the
problem as a graph or a similar structure easily covered by ants and assigning a heuristic preference to
generated solutions at each time step. The ACO has many features, which are similar to that of GA
(Dorigo & Stutzle 2004; Kumar & Reddy 2006): (a) both are population-based stochastic search tech-
niques; (b) GA works on the principle of survival of the fittest, whereas ACO works on pheromone
trail laying behavior of ant colonies; (c) GA uses crossover and mutation as prime operators in its evol-
ution for next generation, whereas ACO uses pheromone trail and heuristic information; (d) in ACO
algorithms, trial solutions are constructed incrementally based on the information contained in the
environment and the solutions are improved by modifying the environment through a form of indirect
communication called stigmergy, whereas in GA, the trial solutions are in the form of strings of gen-
etic materials and new solutions are obtained through modification of the previous solutions.
There were several variants of ACO algorithms and their hybrid algorithms developed over the

years, like Ant System (AS; Dorigo et al. 1996), Ant Colony System (ACS; Dorigo & Gambardella
1997), Ant NET (Di Caro & Dorigo1998), Max-Min AS (Stützle & Hoos 2000), Multiple ACS
(Gambardella et al. 1999), Multi-Colony Ant Algorithms (Iredi et al. 2001), Population-based ACO
for the dynamic environment (Guntsch & Middendorf 2002), ACO for WDNs (Maier et al. 2003),
ACO for reservoir system (Reddy 2006), Beam-ACO (Blum 2008), hybrid genetic Simulated Annealing
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(SA) ACS-PSO (Chen & Chien 2011), Hybrid ACO–PSO (Huang et al. 2013), Parallel ACO (Delé-
Vacq et al. 2013), Hybrid PSO-fuzzy ACO (Elloumi et al. 2014), etc. The evolution of ACO and its
variants are also portrayed in Figure 6.

Other swarm-based meta-heuristics

The other meta-heuristic algorithms that were proposed and applied in various fields for optimization
include Harmony Search (HS; Geem et al. 2001), Shuffled Frog Leaping Algorithm (SFLA; Eusuff &
Lansey 2003), Honey-Bee Mating Optimization (HBMO; Abbass 2001), Glowworm Swarm Optimiz-
ation (GSO; Krishnanand & Ghose 2006), Firefly algorithm (FFA, Yang 2007), ABC (Karaboga 2005),
Cuckoo Search (CS, Yang & Deb 2010), Bat Algorithm (Yang 2010), Multi-colony Bacteria Foraging
Optimization (MC-BFO; Chen et al. 2010), etc. Table 1 gives brief details of these SI-based meta-heur-
istic algorithms and their working principles. The evolution of these meta-heuristics over the years
and their hybrid variants are also showed in Figure 6.
Table 1 | Swarm intelligence based meta-heuristic algorithms, development and their working principles

Algorithm Proposed by year Short description

Harmony Search (HS) Geem et al. (2001) Search works on the principle of a musician trying to identify a
state of pleasing harmony and continuing to play the pitches to
seek better harmony

Honey-Bee Mating Optimization
(HBMO)

Abbass (2001) The algorithm inspired by the mating process of bees

Shuffled Frog Leaping Algorithm
(SFLA)

Eusuff & Lansey
(2003)

The social behavior of frogs inspired SFLA

Artificial Bee Colony (ABC) Karaboga (2005) The algorithm simulates the foraging process of the bees

Glowworm Swarm Optimization Krishnanand &
Ghose (2006)

The search imitates the behavior that a glowworm carries a
luminescence quantity (called luciferin) along with itself to
exchange information with cohorts

Firefly Algorithm (FFA) Yang (2007) The algorithm inspired by the fireflies and their ability to emit light
through the biochemical process (called bioluminescence)

Bat Algorithm (BA) Yang (2010) The algorithm inspired by the echolocation of bats

Cuckoo Search (CS) Yang & Deb (2010) The algorithm is inspired by the obligate brood parasitism of some
cuckoo species by laying their eggs in the nest of host birds

Multi-colony Bacteria Foraging
Optimization (MC-BFO)

Chen et al. (2010) The algorithm integrates the cell-to-cell communication strategies
of multi-colony bacterial community with the chemotaxis
(optimal foraging search capabilities) behavior of single cell
The performance of meta-heuristic search methods is generally influenced by the parameter of the
algorithm. Similar to EAs, these SI algorithms are also quite sensitive to set-up parameters (Reddy
2009). So it is important to fine-tune the parameters for a particular problem of interest before actually
applying the same to the problem (Reddy & Kumar 2012).
APPLICATIONS

The EA and SI methods have emerged as a powerful tool for optimization and management of water
resources problems. There are numerous applications of EAs for water-related problems, namely,
reservoir operation, water distribution systems design, groundwater remediation, parameter esti-
mation in hydrological modeling, watershed management, and fluvial systems, etc. Since there exist
a.silverchair.com/h2open/article-pdf/3/1/135/863175/h2oj0030135.pdf
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several thousands of papers on applications of these algorithms, here, some of the important appli-
cations in water resources are reviewed.

Applications in water distribution systems

WDS comprises a system of interconnected nodes, via pipes, supply sources, such as reservoirs, tanks,
and a set of hydraulic control elements, such as pumps, valves, regulators, etc. The network of inter-
connected nodes, pipes, and other hydraulic control elements is collectively termed as a water
distribution network (WDN). A typical WDN design is formulated as an optimization problem requir-
ing minimization of cost, satisfying the minimum pressure and flow requirements at different nodes. A
variety of EA were applied for design and rehabilitation of WDNs, like GA (Simpson et al. 1994;
Mackle et al. 1995; Savic & Walters 1997; Dandy & Engelhardt 2001; Munavalli & Kumar 2003;
van Zyl et al. 2004; Keedwell & Khu 2005; Vairavamoorthy & Ali 2005; Wu & Walski 2005; Rao
& Salomons 2007; Kadu et al. 2008); Ant Colony optimization (ACO; Maier et al. 2003), Differential
Evolution (DE) (Suribabu 2010; Vasan & Simonovic 2010; Sirsant & Reddy 2018), SFLA (Eusuff &
Lansey 2003); Harmony search (HS) algorithm (Geem 2006), Tabu search (TS) algorithm (Cunha &
Ribeiro 2004), Honey-bee mating optimization (HBMO; Mohan & Babu 2010) Cross entropy (CE)
optimization (Shibu & Reddy 2014); Gravitational search algorithm (GSA, Fallah et al. 2019), etc.
More details of these applications are given in Table 2.
Further, there were several studies that have used multi-objective EA for multi-objective optimiz-

ation of WDNs. In order to ensure satisfactory performance of WDNs at different failure
conditions, the objectives such as reliability, minimum surplus head, etc., are incorporated into the
model in addition to the minimization of cost of the network. The reliability expressed as the perform-
ance of the network in terms of demand satisfaction considering these failure conditions. Failures can
be hydraulic or mechanical; here, hydraulic failure occurs due to uncertainty in input parameters like
nodal demands, and pipe roughness coefficients, whereas mechanical failure occurs due to failure of
one or more components such as pipes, pumps, valves, etc. (Sirsant & Reddy 2018). Different
reliability indicators are employed in different studies as the objective function to be maximized
along with minimization of cost. Different variants of GA techniques were used for the multi-objective
design of WDNs such as Multi-objective GA (MOGA; Halhal et al. 1997; Savic et al. 1997; Vamva-
keridou-Lyroudia et al. 2005; Dandy & Engelhardt 2006), Strength Pareto Evolutionary Algorithm
(SPEA; Cheung et al. 2003), Nondominated Sorting GA-II (NSGA-II; Prasad et al. 2004; Prasad &
Park 2004; Farmani et al. 2005; Kapelan et al. 2005; Ostfeld & Salomons 2006; Jayaram & Srinivasan
2008; Prasad & Tanyimboh 2008; Creaco et al. 2014; Sirsant & Reddy 2020); Multi-objective PSO
(Patil et al. 2020), etc. More details and discussion of these applications is given in Table 3.

Applications in urban drainage and sewer systems

Urban drainage and sewer systems need to be designed such that the required flow capacity is met at
minimum cost. The consideration of networks where both stormwater and sewage are transported
through the same channel makes the problem a little more complex. Various studies used different
EAs for the design of urban drainage and sewer systems like GA (Walters & Lohbeck 1993; Walters
& Smith 1995; Liang et al. 2004; Afshar et al. 2006; Guo et al. 2006) SA (Karovic & Mays 2014), TS
(Liang et al. 2004), DE method (Yazdi 2018), etc. More details of these applications are explained in
Table 4. In addition to carrying the required flow during normal conditions, the high and extreme flow
conditions such as flooding overflow should be considered to make the system more robust to such
situations. This calls for the need to perform the multi-objective design of these systems considering
minimization of the flooding overflow volume or flood damage cost, in addition to the minimization
of cost. Different MOEAs were engaged for solving these problems, such as NSGA-II (Barreto et al.
a.silverchair.com/h2open/article-pdf/3/1/135/863175/h2oj0030135.pdf



Table 2 | Applications of evolutionary algorithms (EA), swarm intelligence (SI) meta-heuristic methods for single-objective
optimization of water distributions systems

Author(s) (year) Technique used Work and objectives
Case studies/problems
considered Key findings

Simpson et al.
(1994)

GA Application of GA on WDN
design problem considering
maximization of the
reciprocal of total network
cost

WDN of Gessler
(1985)

GA can provide an optimal
and a set of sub-optimal
solutions, while other
techniques provide only a
single solution. Also,
complete enumeration and
NLP methods can be
applied only to small
networks

Mackle et al.
(1995)

GA Application of GA for
optimal pump scheduling
for minimization of energy
cost subject to reservoir
filling and emptying
constraints

Example WDN
problem

The efficacy of GA proved for
solving pump scheduling
problems and noted that
GA could offer a lot of new
possibilities for solving
these problems

Savic & Walters
(1997)

GA Development of GANET, and
the application of GA for
WDN design for
minimization of cost of
pipes

Benchmark WDN
problems: Two-
loop, Hanoi and
New York Tunnel

The study inferred GA
suitable for solving WDN
design problems and
performed better than LP,
NLP, and enumeration
methods

Dandy &
Engelhardt
(2001)

GA Application of GA for the
rehabilitation of WDNs
involving the replacement
of water supply pipes for
the minimization of
reciprocal of system cost
(capital, repair and damage
cost)

EL103N Zone
network of
Adelaide city

GA performed efficiently for
solving rehabilitation
problem which included
increased complexities
such as identifying
solutions within budget
limits and consideration of
the diameter of replaced
pipes as decision variables

Maier et al.
(2003)

ACO, GA Application of ACO and GA
for WDNs and their
performance, with the
objective of minimization
of total cost of WDNs

Two benchmark
problems: 14-Pipe
network, New York
Tunnel WDNs

ACO algorithms
outperformed GAs for the
two case studies in terms of
computational efficiency
and their ability to find
near global-optimal
solutions

van Zyl et al.
(2004)

GA Development of a hybrid
model by combining GA
with a hill climber search
method for minimization of
cost of energy

Hypothetical WDN
problem and a real
WDN in the UK

The hybrid method
performed significantly
better than a GA method
for the solution of WDN
problems

Vairavamoorthy
& Ali (2005)

GA Use of pipe index vector as a
measure of the relative
importance of pipes in a
network for reducing the
search space and
improving the efficiency of
GA for minimization of
capital cost

Alandur and Hanoi
WDNs

Different pipes have various
degrees of influence on the
hydraulic performance of
WDN. This information
can be employed to reduce
the search space and the
efficiency of GA
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Table 2 | continued

Author(s) (year) Technique used Work and objectives
Case studies/problems
considered Key findings

Wu & Walski
(2005)

GA Self-adaptive penalty
approach for tuning the
penalty factor and thus
improving the efficacy of
the model for minimization
of cost and maximization
of benefits

Hanoi WDN Self-adaptive penalty factor
approach performed better
than other constraint
handling methods for GA,
such as fixed, dynamic,
annealing, niched and self-
organizing penalty

Keedwell & Khu
(2005)

GA Proposed cellular automation
for network design
algorithm–Genetic
Algorithm (CANDA-GA)
approach for initial seeding
of the GA algorithm and
applied for WDN design
with the objective of
minimization of cost

Two-loop, two
industry networks

CANDA-GA gave faster
convergence of the
algorithm and better
solutions with the same
computational efforts than
traditional GA

Rao & Salomons
(2007)

GA The combined use of ANN
for predicting the
consequences of different
pump and valve control
settings and GA for
selecting the best
combination of those
settings to minimize the
energy cost of meeting the
current and future
demands

Hypothetical WDN The GA–ANN model has
reduced the run time
significantly when
compared to the hydraulic
simulation model and
noted that the meta-
modeling could help for
large complex networks

Munavalli &
Kumar (2003)

GA Application of niched
operator and creep
mutation GA for optimal
scheduling of chlorine
dosage (coded as binary
strings) at water quality
sources for minimization of
the squared difference
between the computed
chlorine concentration and
minimum specified
concentration

Three example
networks

The improved GA with the
niched operator and creep
mutation performed better
than simple GA, as it
produced quick optimal
solutions and found well
suited for multiple chlorine
source problems

Eusuff & Lansey
(2003)

Shuffled Frog
Leaping
Algorithm
(SFLA)

Application of SFLA for
WDN design problem for
minimization of cost of
pipes

Two-loop, Hanoi, and
New York Tunnel
(NYT) WDNs

SLFA obtained the best
solutions for Two-loop, and
Hanoi, and near-optimal
solutions for NYT problem.
SLFA found optimal
solutions in a lesser
number of iterations
compared to GA and SA

Geem (2006) Harmony
search (HS)
algorithm

Application of HS for WDN
design and comparison of
results with other meta-
heuristic algorithms with
the objective of
minimization of cost of
pipes

New York Tunnel
WDNs

HS was able to find the best
solution with the least
number of iterations when
compared with GA, SA,
TS, ACO, SFLA methods.
The HS showed good
convergence and reliability
in achieving optimal
solutions
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Table 2 | continued

Author(s) (year) Technique used Work and objectives
Case studies/problems
considered Key findings

Kadu et al.
(2008)

Modified GA Application of modified GA
for WDN design problem
with the objective of
minimization of the cost of
pipes

A hypothetical
network, Hanoi,
and TRN

Modified GA improves the
efficiency and effectiveness
of GA by reducing the
search space, random use
of various basic and
additional GA operators

Cunha & Ribeiro
(2004)

Tabu search
algorithm

Application of Tabu search
algorithms for WDN
design problems for
minimization of cost of
pipes

Two-loop, Hanoi, and
NYT

Promising results obtained by
using the Tabu search
algorithm for WDN design
problem

Mohan & Babu
(2010)

Honey-bee
mating
optimization
(HBMO)

Application of HBMO for
optimal WDN design and
its comparison with other
algorithms like GA and SA
for minimization of cost of
pipes

Two-loop and Hanoi
WDNs

HMBO was able to arrive at
optimal solutions in a
lesser number of function
evaluations compared to
GA and SA. For HMBO,
the uniform crossover
preferred over the single/
multi-point crossover.

Suribabu (2010) DE Application of DE for least-
cost design of WDNs for
minimization of cost of
pipes

Two-loop, Hanoi,
New York Tunnel,
and 14 pipe
network expansion
problem

The DE found to be more
efficient than GA and SA
for the optimal design of
WDNs. The role of
randomness is less in DE
as compared to other meta-
heuristic algorithms

Vasan &
Simonovic
(2010)

DE Development of DENET, by
integrating DE and
EPANET for WDN design
problem for minimization
of cost and maximization
of network resilience (two
separate cases)

New York Tunnel,
Hanoi WDNs

DENET found to be a useful
tool, which can be used as
an alternative approach for
solving WDN design
problems

Shibu & Reddy
(2014)

Cross entropy
(CE)
optimization

Application of CE method for
optimal WDN design
under demand uncertainty
for minimization of cost

NYT and a real case
study of Tukum-
zone, India

The CE method performed
quite well for the design of
WDNs and noted that the
optimal cost goes on
increasing with the
increase in demand
uncertainty

Sirsant & Reddy
(2018)

Self-adaptive
DE (SADE)

Application and performance
evaluation of SADE for the
deterministic and
reliability-based design of
WDNs considering cost
minimization subject to
satisfying a minimum
reliability level

Two-loop, Apulian,
BakRyan, Fossolo
and a real WDN of
Ramnagar zone in
India

SADE performed well for
both the deterministic and
reliability-based designs of
WDNs and converged
faster than simple DE and
other meta-heuristics
methods with a higher
success rate

Fallah et al.
(2019)

Gravitational
search
algorithm
(GSA)

Application of GSA for WDN
design problem and results
compared with those
obtained using different
EAs for minimization of
cost of pipes

Hanoi, Two reservoir
network and
New York Tunnel
and a real WDN
situated in
Khorramshahr city
in Iran

GSA converged faster for
Hanoi and Khorramshahr
WDNs. For NYT and TR
problems, GSA required a
larger number of function
evaluations compared to
previous studies but led to
lower-cost solutions. The
GSA requires only two
parameters
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Table 3 | Applications of multi-objective evolutionary algorithms for the multi-objective design of water distributions systems

Author(s) (year) Technique used Work and objectives
Case studies/problems
considered Key findings

Halhal et al.
(1997)

Structured
messy GA
(SMGA)

Application of SMGA for
solving multi-objective
rehabilitation of WDNs for
minimization of capital cost
and maximization of
benefits

Small-looped example
network, real WDN
in Morocco

The SMGA technique
proved to be more
efficient than traditional
GA

Savic et al.
(1997)

MOGA Use of pump switching as a
surrogate for maintenance
cost, improvement of the
traditional GA with
hybridization involving a
local search for
minimization of energy and
maintenance cost

Example WDN problem Seeding of the initial
population with solutions
from previous runs
brought improvements in
both efficacy and quality
of solutions found

Cheung et al.
(2003)

SPEA Application of SPEA for the
multi-objective design of
WDNs, by maintaining an
external population for
storing the non-dominated
solutions from the
beginning of the algorithm,
for minimization of cost,
minimization of the
maximum deficit in
pressure and maximizing
the hydraulic benefits

Hypothetical WDN
comprising of 14
pipes and 12 nodes

SPEA performed well for
the problem. Uniform
crossover was found to be
most suitable. The
recombination operator
has a greater influence
than the mutation
operator on the results

Prasad et al.
(2004)

NSGA-II Investigation of the booster
location and scheduling in
WDNs for minimization of
total disinfectant dosage
and maximization of the
volumetric demand

Utility located in the
eastern USA

The model can determine
the optimal locations of
booster stations given the
number of stations, does
not require pruning of the
monitoring locations as
all the demand nodes
modeled as monitoring
nodes

Prasad & Park
(2004)

NSGA-II Introduction of the concept of
network resilience as a
surrogate for WDN
reliability and its use for a
multi-objective design for
minimization of cost and
maximization of network
resilience

Two-loop and Hanoi
WDN

The constraint domination
criteria incorporated, thus
enabling GA to handle
the constraints more
efficiently

The incorporation of
network resilience in
multi-objective
optimization leads to a
considerable reduction in
computational time

Kapelan et al.
(2005)

Robust
NSGA-II
(RNSGA-II)

Development and application
of RNSGA-II (which
considers the age of
chromosome for calculating
its fitness function) for
minimization of cost and
maximization of robustness

New York tunnel WDN The RNSGA-II can handle
any type of hydraulic
uncertainty and model
nonlinearity. The
drawback is that it needs
two additional
parameters, minimum
chromosome age and
several samples, which
require some tuning
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Table 3 | continued

Author(s) (year) Technique used Work and objectives
Case studies/problems
considered Key findings

Farmani et al.
(2005)

NSGA-II and
SPEA-II

Comparison of the
performance of two EAs for
the multi-objective design of
WDNs for minimization of
cost and minimization of
maximum head deficiency

New York Tunnel and
Hanoi

SPEA-II performed slightly
better than NSGA-II and
noted the need for further
improvement to obtain
better Pareto fronts

Vamvakeridou-
Lyroudia et al.
(2005)

MOGA Multi-objective design of
WDNs by incorporating
fuzzy reasoning for the
estimation of benefits
considering minimization of
cost and maximization of
benefits

Anytown WDN The multiple criteria applied
for benefit function are
more extensive and strict.
Despite this, the model
gave solutions that not
only satisfy these criteria
but also lead to reduced
costs

Dandy &
Engelhardt
(2006)

MOGA Application of MOGA for
replacement scheduling of
water pipelines for two
cases: single time step and
multiple time step
considering minimization of
economic cost and
maximization of reliability

EL103N Zone network
of Adelaide city

MOGA performed efficiently
for the problem. However,
a very simplified
framework discussed in
this study to solve the
problem, such as the
replacement of pipes with
the same diameter pipe

Ostfeld &
Salomons
(2006)

NSGA-II Optimal placement of sensors
in WDN using the multi-
objective formulation for
minimization of the
expected time of detection
of contamination, projected
population affected prior to
detection, expected demand
of contaminated water prior
to detection, and
maximization of detection
likelihood

Two example WDNs The presented approach can
be applied to real case
studies also. The main
limitation is how to
sample injection events
more efficiently

Prasad &
Tanyimboh
(2008)

NSGA-II Multi-objective design of
WDNs considering tank
design procedure (taking
tank shape parameters as
decision variables) using
entropy and resilience as the
surrogates for reliability, for
minimization of cost and
maximization of resilience
and entropy (one at a time)

Anytown WDN Entropy serves as a better
surrogate for reliability.
The hydraulic
performance of the
obtained least-cost
solutions found to be
satisfying all the hydraulic
constraints

Jayaram &
Srinivasan
(2008)

NSGA-II Introduction of a new index
(MRI) as a surrogate for
WDN reliability and its
application for the multi-
objective design of WDNs

A hypothetical network
comprising of 14
pipes and 11 nodes

MRI could overcome the
drawbacks of the
resilience index in terms
of its application to
WDNs with multiple
supply sources

Three optimization methods
are employed: NSGA-II, a
heuristic method and a
combination of heuristic and
NSGA-II for minimization of
life cycle cost and
maximization of modified
resilience index (MRI)

Feeding NSGA-II with
initial solutions using
heuristic methods reduces
the computational burden
to a huge extent
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Table 3 | continued

Author(s) (year) Technique used Work and objectives
Case studies/problems
considered Key findings

Raad et al.
(2010)

AMALGAM Comparison of four reliability
indices as surrogates for
reliability for the multi-
objective design of WDNs
for minimization of cost
and maximization of four
reliability indices: flow
entropy, resilience, network
resilience, and a modified
reliability surrogate (MRS)

TRP, Hanoi, and NYT
WDNs

Although no ‘best’ RSM was
identified, network
resilience and MRS
showed comparatively
better performance than
other indices

Creaco et al.
(2014)

NSGA-II Comparison of resilience and
entropy as reliability
surrogate for the multi-
objective design of WDNs
for minimization of cost
and maximization of
reliability indices, entropy,
and resilience (one at a
time)

A hypothetical network
consisting of 11 pipes
and a real network of
Ferrara city, Italy

Resilience index found to be
a more suitable surrogate
for reliability compared to
entropy. Huge
computational savings
can be obtained by
employing these indices
in the design procedure

Patil et al. (2020) MOPSOþ MOPSO is augmented with
(1) local search, (2) a
modified strategy for
assigning the leader and (3)
a modified mutation
scheme termed as
MOPSOþ and employed
for WDN design for
minimization of cost and
maximization of network
resilience

Hanoi, Blacksburg,
New York Tunnel,
GoYang WDNs

A significant number of new
Pareto-optimal solutions
obtained using MOPSOþ
compared to previous
studies. For medium-sized
networks, the number of
function evaluations was
the same as that of
previous studies, but for
intermediate-sized
problems, more number
of function evaluations
needed, but the solutions
obtained were better

The suitability of MOPSOþ
still needs to be tested for
larger sized networks

Sirsant & Reddy
(2020)

NSGA-II The study applied extended
period simulation (EPS)
and NSGA-II for the multi-
objective optimization of
WDNs with maximization
of reliability or reliability
surrogate measure (RSM)
and minimization of cost as
two objectives. Investigated
alternatives for
computationally intensive
reliability procedures, and
evaluated the efficacy of
RSMs like entropy,
resiliency, and network
resilience, and their
combinations to represent
the reliability of WDNs

Case studies of Two-
loop, GoYang, and
Fossolo WDNs, as
well as a real case
study of Ramnagar
zone WDN in India

NSGA-II provides effective
Pareto-optimal solutions
for the bi-objective WDN
model, which helps to
find the associations
between RSMs and the
reliability of WDNs. The
study recommended
entropy as a surrogate for
mechanical reliability (for
larger WDNs), while
resiliency for hydraulic
reliability; and a
combined entropy-
resilience index (CERI)
for accounting both
hydraulic and mechanical
reliabilities
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2006; Muleta & Boulos 2007; Barreto et al. 2010; Penn et al. 2013; Vojinovic et al. 2014; Yazdi et al.
2017a; Wang et al. 2018), Nondomination Sorting Differential Evolution (NSDE; Yazdi et al. 2017b),
etc. The specific details of these applications are also given in Table 4.
Applications in reservoir operation and irrigation systems

Reservoirs and irrigation systems need to be operated in a cost-effective manner such that the def-
icits are minimum as well the benefits achieved in terms of minimum cost or maximum energy
production. Thus, the optimization problem is formulated as determination of the optimal release
or operating policies such that the deficits are minimum and the benefits are maximum. Several
meta-heuristic techniques were applied to solve different problems (Rani & Moreira 2010). To
solve single-objective problems, the techniques used include GA (Oliveira & Loucks 1997; Wardlaw
& Sharif 1999; Nixon et al. 2001; Merabtene et al. 2002; Dessalegne et al. 2004; Raju & Kumar
2004; Kerachian & Karamouz 2006, 2007; Kumar et al. 2006; Kuo et al. 2006; Zahraie et al.
2008), Shuffled complex evolution (SCE) algorithm (Lerma et al. 2015), PSO (Kumar & Reddy
2007; Reddy & Kumar 2007a; Ghimire & Reddy 2013); for solving multi-objective problems, the
MOGA (Reddy & Kumar 2006), elitist-mutated MOPSO (Reddy & Kumar 2007b, 2009), multi-
objective DE (MODE, Reddy & Kumar 2007c, 2008; Raju et al. 2012), etc. More details of these
applications are described in Table 5.
Applications in water supply and wastewater system

The water supply and wastewater systems are subjected to many dynamic loadings, such as rain, the
release of stormwater from storage tanks, etc. These loadings need to be regulated efficiently such that
the required flow quality and quantity levels are maintained at minimum costs. There were several
studies that have used EAs for solving these problems, such as GA (Rauch & Harremoes 1999;
Tsai & Chang 2001; Wang & Jamieson 2002; Lavric et al. 2005; Murthy & Vengal 2006; Montaseri
et al. 2015; Swan et al. 2017; Raseman et al. 2020), SFLA (Chung & Lansey 2009), etc. Also, for con-
sidering different conflicting issues, such as minimizing the total system cost and satisfactory
performance of the systems under different dynamic loadings or contaminant additions, multi-objec-
tive optimization models developed and engaged MOEAs to solve the problems like MOGA (Chen
et al. 2003), NSGA-II (Guria et al. 2005; Yandamuri et al. 2006; Fu et al. 2008; Muschalla 2008),
etc. Table 6 gives more details of the applications and findings of the studies.
Applications in watershed management and fluvial systems

Watershed management and planning require modeling the hydrologic and fluvial characteristics
properly and efficiently, such that the required water management conditions can be achieved in a
cost-effective manner. Thus, the various watershed management techniques, such as the design of
detention systems, flood management practices, and other best management practices (BMPs),
need to be designed considering cost minimization and system reliability and efficiency maximization.
Several studies used EAs for solving the relevant optimization models like GA (Harrell & Ranjithan
2003; Muleta & Nicklow 2005; Artita et al. 2013; Aminjavaheri & Nazif 2018), DE (Hang & Chika-
mori 2017), PSO (Shamsudin et al. 2014), MOGA (Yeh & Labadie 1997; Perez-Pedini et al. 2005),
NSGA-II (Lee et al. 2012; Karamouz & Nazif 2013; Aminjavaheri & Nazif 2018), etc. More details
of the applications and their findings are given in Table 7.
a.silverchair.com/h2open/article-pdf/3/1/135/863175/h2oj0030135.pdf



Table 4 | Applications of EA and SI meta-heuristic methods for optimization of urban drainage and sewer systems

Author(s)
(year) Technique used Work and objectives

Case studies/problems
considered Key findings

Walters &
Lohbeck
(1993)

GA Optimal layout design of the
network using GA for
minimization of cost

Example network GA model with integer coding
proved to be very efficient
compared to binary-coded
GA. The computational and
memory requirements for GA
found to be very less as
compared to DP

Walters &
Smith
(1995)

GA Optimal layout design using
evolutionary and GA
principles for minimization
of cost. The use of an
efficient tree growing
algorithm and
incorporation of redundant
genetic information within
the reproduction phase

Example network The algorithm found to be
highly efficient and is suitable
for those networks which
have one or more identifiable
roots from which flow
diverges or to which flow
converges

Liang et al.
(2004)

GA and Tabu
search

Application of GA and Tabu
search techniques for the
design of gravity waste
water collection systems for
minimization of direct cost
(material, backfill,
excavation, and soil dump
cost)

Example network Both GA and TS produced
optimal designs with
shallower pipe elevations
downstream compared with
traditional design. TS
technique lead to lower-cost
designs than GA

Afshar et al.
(2006)

GA Hydrograph-based sewer
design using GA as the
optimization tool and
SWMM as the hydraulic
simulator for minimization
of total piping and
excavation cost

Two example
networks

The proposed model proved to
be very efficient as it could
incorporate the inflow
hydrograph as an input to the
system and perform flood
routing and is suitable for
application to large-scale
stormwater networks

Barreto
et al.
(2006)

NSGA-II and
ε-MOEA

Multi-tier approach for
solving the problem of
drainage network
rehabilitation for
minimization of pipe
installation cost and
minimization of surcharge
in a pipe network

Two example
networks

NSGA-II performs better than
ε-MOEA for small population
size, but its performance
degrades with an increase in
population size. The
performance of ε-MOEA
showed less sensitivity to
population size

Guo et al.
(2006)

CA-GASiNO
(Cellular
Automata and
GA)

Application of a hybrid
CA-GASiNO method which
involves seeding the
MOGA with local search
based on CA principle for
Sewer Network
Optimization, with
minimization of flooding
within the sewer system and
minimization of the capital
cost of the network as two
objectives

One small
hypothetical
network and one
large real network

The CA-GASiNO required
comparatively much smaller
number of function
evaluations as compared to
NSGA-II
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Table 4 | continued

Author(s)
(year) Technique used Work and objectives

Case studies/problems
considered Key findings

Muleta &
Boulos
(2007)

NSGA-II Application of NSGA-II for
the multi-objective design of
urban drainage systems by
coupling it with EPA
SWMM5 for minimization
of cost and overflow
volume

A hypothetical case
study

The tool performed well for the
example problem and can be
useful to any wastewater
utility attempting to optimize
its capital improvement
program

Barreto
et al.
(2010)

NSGA-II and
ε-MOEA

Application and performance
evaluation of two EAs for
the rehabilitation of urban
drainage systems for
minimization of
rehabilitation cost (cost of
pipes, excavation,
installation, restoration, and
reinstatement) and
minimization of flood
damage cost

An example network
consisting of 12
pipes, 13
manholes, and 11
sub-catchments

NSGA-II performed better for
smaller population sizes, but
its performance deteriorates
for large population sizes; ε-
MOEA was less sensitive to
population size. However, the
diversity of solutions not as
good as that of NSGA-II for
large population sizes. The
number of function
evaluations and
computational time were
better for NSGA-II

Penn et al.
(2013)

NSGA-II A multi-objective optimization
model for estimating the
optimal distribution of
different types of GWR
homes in an existing
municipal sewer system for
minimization of wastewater
flow at the outlet of the
neighborhoods sewer
system and minimization of
the cost of the on-site GWR
treatment system

Sewer system
located in central
Israel, near the
coast (flat terrain)

The results obtained lead to
maximum water savings in
most houses. Further
suggested consideration of
the water quality aspect in
future studies

Karovic &
Mays
(2014)

SA Development of an
optimization procedure for
designing storm and
sanitary sewer systems
using SA for minimization
of cost

A hypothetical
storm sewer
system

Better results obtained by
applying the SA procedure
rather than the straight slope
method, implying that
optimization procedures
should be used for designing
the sewer systems

Vojinovic
et al.
(2014)

NSGA-II Multi-objective design of
urban drainage systems
under uncertainties from
climate change,
urbanization, population
growth, and aging of pipes
considering minimization of
damage cost and
intervention cost

Case study of
Dhaka,
Bangladesh

The NSGA-II method produced
widespread Pareto-optimal
solutions for urban drainage
systems

Yazdi et al.
(2017a)

Non-dominated
sorting Harmony
Search (NSHS)

Development and application
of NSHS for assigning
optimal rehabilitation plans
for sewer pipe networks.
Three optimization tools,
NSGA-II, MOPSO, and
NSHS, were applied and
tested for the problem for
minimization of pipe
replacement cost and
flooding overflow volume

A storm sewer pipe
network in the
south part of
Seoul, South
Korea

The NHSH gave the best results
for all population sizes
considered, whereas MOPSO
performed the worst for all
the cases. NSGA-II gave
solutions closer to the NSHS
algorithm when the number
of function evaluations
increased, NSHS still
performed better
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Table 4 | continued

Author(s)
(year) Technique used Work and objectives

Case studies/problems
considered Key findings

Yazdi et al.
(2017b)

SPEA-II, NSGA-II,
and two extended
versions of HS
and DE, NSHS
and NSDE

A comparative application of
different MOEAs for
hydraulic rehabilitation of
urban drainage networks
for minimization of cost of
rehabilitation and
minimization of the
flooding overflow volume

Gasan, Sungsan,
Yongdub, and
Singil network

The NSHS outperformed other
algorithms by generating the
best Pareto-optimal solutions
for the problem

Yazdi
(2018)

DE Application of DE to find the
best monitoring sites based
on maximizing the joint
entropy obtained by
information associated with
water quality time series

Drainage network in
Tehran, Iran

The entropy-based method
leads to a high level of
information content with a
significantly smaller number
of monitoring sites as
compared to the other
designs

Wang et al.
(2018)

NSGA-II, MLOT,
and GALAXY

A comparison of three
MOEAs for multi-objective
urban drainage adaptation
problems for minimization
of cost and system
overloading

A portion of the
drainage network
in the city of
Hohhot

GALAXY was found to be the
most efficient among the
three MOEAs as it can save
substantial time and effort to
cope with the
parameterization issue of
MOEAs

Yazdi
(2018)

Non-domination
sorting DE
(NSDE)

Resiliency-based multi-
objective design of urban
drainage systems using
NSDE considering
objectives of minimization
of total flooding and
rehabilitation cost and
minimization of the total
flooding volume

The western part of
Tehran
Stormwater
Drainage System
(TSDS)

Results showed that the optimal
design obtained by the NSDE
could decrease network
flooding from 3.5� 106 m3 to
near zero with at most 23%
lower investment costs
relative to the traditional
design

H2Open Journal Vol 3 No 1
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Applications in parameter estimation of hydrological models

For simulating the various hydrological processes, there exist several hydrological models (namely,
lumped, semi-distributed, distributed models). The model may consist of a large number of com-
ponents with several parameters, so one has to choose the appropriate model depending on the
purpose and accuracy of the model variables of interest. To represent and simulate various hydrolo-
gical processes accurately, it may require proper calibration and validation of the model parameters
using historical data. A typical calibration process thus requires minimization of the error between the
model simulated and actual values of the hydrologic variables (e.g., runoff). Sometimes, the model
responses vary and may be suitable for a particular event or application. Also, the different perform-
ance indices used for the calibration process may give different results. For improving the
performance of the simulation models under different scenarios, multi-variate calibration may be
needed, which can be done using multi-objective calibration. For calibration of the hydrological
models, several studies used different EAs like GA (Wang 1991; Franchini & Galeati 1997; Liong
et al. 2001; Zou & Lung 2004), SCE algorithm (Zhang et al. 2009; Tigkas et al. 2016; Krishnan
et al. 2018; Shin & Choi 2018), MOPSO (Mostafaie et al. 2018), NSGA-II (Khu & Madsen 2005;
Alamdari et al. 2017; Tian et al. 2019), AMALGAM (Koppa et al. 2019), etc. More details of EAs
and MOEA applications for single and multi-objective parameter estimation of hydrological models
are presented in Table 8.
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Table 5 | Applications of EA and SI meta-heuristic methods for the operation of reservoirs and irrigation systems

Author(s) (year) Technique used Work and objectives
Case studies/problems
considered Key findings

Oliveira &
Loucks
(1997)

GA Application of GA for multi-
reservoir operation
considering minimization
of the sum of squared
deficits

Two hypothetical
systems

GA proved to be an
efficient tool for solving
the multi-reservoir
operation problem and
can handle complex
situations like side
demands or constraints
on releases, power
production as compared
to the DP approach

Wardlaw &
Sharif
(1999)

GA Different alternative
formulations of GA
evaluated for the four
reservoir problem for
maximization of the
benefits

Hypothetical four
reservoir problem

A real-value representation,
incorporating tournament
selection, elitism, uniform
crossover, and modified
uniform mutation will
operate most efficiently
for the reservoir
operation problem. GA
found to be more efficient
than traditional methods
like DP and has the
advantage that no initial
trial release policy
required

Nixon et al.
(2001)

GA Examination of GA
optimization to identify
water delivery schedules
for an open channel
irrigation system for
minimization of the
number of orders shifted
and minimization of
channel flow rate
variations, such that
particular size of order
shifts encouraged, and
others discouraged, and
channel capacity not
exceeded

A problem involving
scheduling irrigation
water deliveries in a
single channel spur
consisting of five
irrigators with one
order each

GA performed well and
found to be suitable for
efficiently scheduling
irrigation orders

Merabtene
et al. (2002)

GA Development of a DSS to
assess the susceptibility of
water supply systems to
droughts. GA used to
search the optimal
operation, such that
drought risk index is
minimum

Fukuoka city water
supply system, Japan

GA performed well for the
problem, but the physical
attributes of the problem
can be further
incorporated using
engineers’ experience
through fuzzy inference

Raju &
Kumar
(2004)

GA Application of GA to evolve
efficient cropping pattern
for maximizing benefits
for an irrigation project

Sri Ram Sagar Project
(SRSP) situated on
river Godavari in
Telangana, India

GA is found to be a useful
tool for irrigation
planning and can even be
applied for complex
problems involving
nonlinear optimization
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Table 5 | continued

Author(s) (year) Technique used Work and objectives
Case studies/problems
considered Key findings

Dessalegne
et al. (2004)

GA Evaluation and optimization
of dam operations in
multi-reservoir river
systems for minimization
of the maximum water
surface elevation
deviation at any cross-
section and over any
incremental time step,
and minimization of the
maximum rate of water
level fluctuation at any
cross-section over the
entire simulation horizon

A hypothetical three-
reservoir river system
and a portion of the
Illinois River
Waterway

GA performed efficiently
for both the case studies,
and the methodology can
be further extended to
optimize the operation of
multiple reservoir systems
and to meet
environmental
requirements as well

Kuo et al.
(2006)

GA Development of a hybrid
ANN-GA model for
reservoir water quality
management, with ANN
serving as the model for
predicting the phosphorus
concentrations and GA
for determining the
proper reduction rates of
nutrient loads from the
watershed to minimize
the phosphorus reduction
rate of the inflow

Feitsui Reservoir situated
in Taipei Metropolitan
Area

The hybrid model
performed efficiently by
significantly reducing the
computational burden as
required in case of other
simulation models

Kumar et al.
(2006)

GA Development of a GA-based
model for obtaining an
optimal operating policy
and optimal crop water
allocation from an
irrigation reservoir for
maximization of the sum
of the relative yields from
all crops in the irrigated
area

Malaprabha single-
purpose irrigation
reservoir in Karnataka
State, India

The performance of the GA
model was found to be
suitable for application
on real case studies

Kumar &
Reddy
(2006)

ACO, GA Evaluation of ACO for the
derivation of optimal
operation policies for
multi-purpose reservoir
system, considering short-
time and long-time
horizons

Case study of Hirakud
reservoir system, India

The ACO technique has
resulted in superior
performance for long-
term reservoir operation
as compared to GA
solutions

Reddy &
Kumar
(2006)

MOGA Application of MOGA for
multi-purpose reservoir
operation for
minimization of the sum
of squared deficits and
maximization of annual
energy production

Real case study of
Bhadra reservoir
system in India

MOGA performed well and
generated good Pareto-
optimal solutions for the
reservoir operation
problem

Kumar &
Reddy
(2007)

Elitist-mutated
PSO (EMPSO),
GA

Development of EMPSO
and its application for
multi-purpose reservoir
operation considering
minimization of the sum
of squared deficits for
irrigation, and
maximization of annual
energy production

Hypothetical four
reservoir system and
real case study of the
Bhadra reservoir
system in India

The EMPSO consistently
performed better than
standard PSO and GA
techniques, requiring less
number of function
evaluations
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Table 5 | continued

Author(s) (year) Technique used Work and objectives
Case studies/problems
considered Key findings

Reddy &
Kumar
(2007a)

EMPSO, GA Elitist-mutated PSO
(EMPSO) proposed for
integrated reservoir
operation for irrigation and
multi-crop water allocation
in a reservoir command
area. The model considers
maximizing crop yields
with due consideration of
water shortages in different
periods

Case study of
Malaprabha reservoir
system in India

The proposed PSO
technique gave efficient
solutions to obtain
reservoir operation
policies and crop water
allocations for multiple
crops. The approach
found to be beneficial for
integrated water
management under
water-scarce conditions

Reddy &
Kumar
(2007b)

EM-MOPSO,
NSGA-II

Development of EM-
MOPSO for multi-
objective multi-purpose
reservoir operation for
minimization of the sum
of squared deficits for
irrigation, and
maximization of annual
hydropower production

Four test problems and a
real case study of the
Bhadra reservoir
system in India

The EM-MOPSO found to
be an efficient tool for
multi-objective reservoir
operation and produced
consistently better Pareto-
fronts with good
convergence and
uniformly widespread
solutions as compared to
NSGA-I

Reddy &
Kumar
(2007c)

MODE, NSGA-II Application of MODE for
multi-objective multi-
purpose reservoir
operation for
minimization of the sum
of squared deviations for
irrigation and
maximization of annual
hydropower production

Hirakud reservoir
project in Orissa state,
India

The MODE performed
better than NSGA-II for
reservoir operation
problem. Noted that
MODE could serve as an
efficient alternative tool
for solving multi-objective
optimization problems in
the water resource
systems

Kerachian &
Karamouz
(2006),
2007)

Variable Length
Chromosome
GA (VLGA)

The SGA and VLGA were
used to reduce the
computational burden of
GA and applied for
reservoir operation
problem accounting for
inherent uncertainties in
reservoir inflows
considering maximization
of the utility function of
different water users

15-Khordad Reservoir in
the central part of Iran

The SGA reduced the
overall time as compared
to GA by dynamically
updating the
chromosome length.
VLGA was found to be
an efficient tool for
solving the problem and
can be even applied to
problems comprising
longer planning horizons

Zahraie et al.
(2008)

VLGA Reservoir operation using
two adaptive varying
chromosome lengths GA
(VLGA) for maximization
of the utility function of
different water users

Zayandeh-Rud
Reservoir, Karoon-I
Reservoir, and the
system of Bakhtiari
and Dez reservoirs in
series in Iran

The VLGA found to be
efficient in solving the
reservoir operation
problem

Reddy &
Kumar
(2008)

MODE Proposed MODE to evolve
different strategies for the
simultaneous evolution of
optimal cropping pattern
and operation policies for
irrigation reservoir system
with the objectives of
maximizing the total net
benefits from the irrigation
system and maximize the
total irrigated area in the
command area

Real case study of
Malaprabha reservoir
systems in India

MODE approach provides a
wide spectrum of efficient
Pareto-optimal solutions
and gives sufficient
flexibility to select the
best irrigation planning
and reservoir operation
plan, which could be very
useful for multi-crop
irrigation reservoir
systems
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Table 5 | continued

Author(s) (year) Technique used Work and objectives
Case studies/problems
considered Key findings

Reddy &
Kumar
(2009)

MODE, NSGA-II Integrated water resource
management model for
reservoirs considering
minimization of squared
irrigation deficits and
maximization of
hydropower for reservoir
system, subject to meeting
the flood control
regulations

Hirakud reservoir system
in India

MODE helps in generation
of efficient Pareto-optimal
solutions and helps to
analyze the trade-offs
between multiple
objectives, thus facilitated
easiness in the decision
making for the operator

Raju et al.
(2012)

MODE Application of MODE for
irrigation planning for
maximization of net
benefits, agricultural
production, and labor
employment

Mahi Bajaj Sagar
Project, Rajasthan,
India

MODE performed well for
the problem. Further
noted that while applying
for real case studies,
proper sensitivity analysis
should be carried out to
determine the best-suited
parameters

Lerma et al.
(2015)

Shuffled complex
evolution (SCE-
UA) and Scatter
search algorithm

Assessment of two EAs to
design the optimal
operating rules for water
resource systems for
minimization of the cost
of water storage, and
costs associated with a
deficit of demands

Tirso-Flumendosae-
Campidano system
located on the island
of Sardinia (Italy)

SCE-UA found to be a more
efficient algorithm for
solving the problem in
terms of faster
convergence and
attaining global
optimality

H2Open Journal Vol 3 No 1
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Applications in groundwater remediation, groundwater systems monitoring network design

The purpose of the GW monitoring networks is to capture the information about the contamination
of GW and its source/location. In order to design a cost-effective system, the number of monitoring
wells should be minimum and should not be redundant while being able to capture the desired infor-
mation about the contamination. Different types of EAs were used for solving the groundwater
systems and monitoring network design models formulated with different complexities. The popular
techniques used include GA (McKinney & Lin 1994; Ritzel et al. 1994; Chadalavada & Datta 2008),
SA (Dougherty & Marryott 1991), DE (Alizadeh et al. 2018), Probabilistic Pareto GA (PPGA; Luo
et al. 2016), NSGA-II (Tang et al. 2007), ε-multi-objective noisy memetic algorithm (ε-MONMA;
Song et al. 2019), etc. More details of the applications of EAs for groundwater systems are given
in Table 9.
Groundwater systems are redundantly subjected to various pollutants at different times and locations,

which are dynamic in nature. In order to ensure that the required GW quality levels are maintained,
observation, as well as pumping wells, need to be designed. The problem can thus be formulated as
determining the location and number of wells as well as the required pumping rates at these wells
such that the cost is minimum and the desired quality levels are maintained. Several studies used
EAs for solving the groundwater remediation problems via the simulation–optimization framework
such as GA (Huang & Mayer 1997; Wang & Zheng 1997; Sun & Zheng 1999; Smalley et al. 2000;
Yoon & Shoemaker 2001; Zheng & Wang 2002; Babbar & Minsker 2006; Wu et al. 2006; Park
et al. 2007; Bayer et al. 2008; Seyedpour et al. 2019), SA (Kobayashi et al. 2008); MOGA (Erickson
et al. 2002; Mantoglou & Kourakos 2007; Singh et al. 2008), NSGA-II (Singh & Chakrabarty 2011;
Ouyang et al. 2017), etc. More details of these EAs applications are also elaborated in Table 9.
a.silverchair.com/h2open/article-pdf/3/1/135/863175/h2oj0030135.pdf



Table 6 | Applications of EA and SI meta-heuristic methods for single and multi-objective optimization of water supply and/or
wastewater systems

Author(s) (year) Technique used Work and objectives
Case studies/problems
considered Key findings

Rauch &
Harremoes
(1999)

GA A novel approach to control
the whole system of the
sewer system, treatment
plant, and receiving water,
with the aim to achieve
minimum effects of
pollution, considering
minimization of the
overflow volume as
objective

A hypothetical example The application of predictive
model control in
conjunction with genetic
algorithms offers an
attractive tool for real-time
control of urban
wastewater systems

Tsai &
Chang
(2001)

GA Development of a
mathematical programming
model for water usage and
treatment network design
for minimization of
operating cost and
freshwater consumption
rate

Two example problems Search space was reduced
significantly by using split
fractions as decision
variables

The appropriate ranges of the
design variables were
efficiently determined by
cascading the evolution
processes according to the
inducing parameters

Wang &
Jamieson
(2002)

GA Development of methodology
for water quality
management on a river
basin scale based on
GA/ANN approach for
minimization of cost of
treatment and conveyance
of wastewater

Upper River Thames Basin,
England

The proposed approach has
several advantages in
terms of incorporation of
both construction and
operating costs, rapid
convergence, and vast
progress in computational
efficiency

Chen et al.
(2003)

MOGA Development of a hybrid
control algorithm
integrating the
indiscernibility capability of
rough set theory and search
capability of genetic
algorithms with
conventional neural-fuzzy
controller design and its
application for
minimization of the
operating cost of
wastewater treatment

Example problem The hybrid fuzzy control
system provides immediate
guidance and control with
respect to multi-objective
requirements for
distributed control system
using on-line process data

Lavric et al.
(2005)

GA Application of GA for finding
the optimum water resource
allocation and the
wastewater network for
minimization of the supply
water consumption

An example network The algorithm guarantees
both the optimal topology
of the units’ operation
network and the minimum
supply water consumption

Guria et al.
(2005)

NSGA-II Application of NSGA-II for
optimization of Reverse
Osmosis (RO) desalination
units using different
adaptations of NSGA-II for
maximization of the
permeate throughput,
minimization of the cost of
desalination, and
minimization of the
permeate concentration

Operation of an existing
plant and design of a
new plant

NSGA-II and other schemes
were used to obtain the
optimal solutions and
noted that the NSGA-II
variant found to be
producing good solutions
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Table 6 | continued

Author(s) (year) Technique used Work and objectives
Case studies/problems
considered Key findings

Yandamuri
et al.
(2006)

NSGA-II A multi-objective optimization
framework for optimal
waste load allocation in
rivers for minimization of
total treatment cost and
maximization of overall
performance

Willamette river system in
the state of Oregon

Results indicated that the
least inequity Pareto-
optimal solution demands
significantly more
treatment effort and cost
compared with that of the
least-cost Pareto-optimal
solution

Murthy &
Vengal
(2006)

GA Application of GA for
optimization of RO system
for maximization of the
rejection of the solute while
varying the feed flowrate
and the overall flux across
the membrane

Case study of the RO
system

GA converged quickly to the
optimal solution and
showed its suitability for
the RO problem

Fu et al.
(2008)

NSGA-II Application of NSGA-II for
multi-objective optimal
control of urban wastewater
systems considering
maximization of DO and
Ammonia concentration in
the river

An integrated case study
was taken from literature

NSGA-II was able to
generate good Pareto-
optimal solutions for the
chosen problem
successfully

Muschalla
(2008)

Adaptive
NSGA-II

Development of a new multi-
objective EA combining the
advantages of NSGA-II and
self-adaptive evolution
strategies for optimization
of the performance of an
urban wastewater system
considering minimization of
investment cost and
maximization of river water
quality

The sewer system of
Heusenstamm, located in
the central part of the
catchment of the river
Bieber

The developed tool found to
be robust and efficient in
providing Pareto-optimal
solutions. Further, it
suggested focusing more
on improving the
computational efficiency of
the model

Chung &
Lansey
(2009)

Shuffled Frog
Leaping
Algorithm
(SFLA)

Application of SFLA for the
optimization of a large-scale
water supply system for
minimization of the total
cost (construction and
expansion, and operations
and maintenance costs for
all components of pipes,
canals, pumps, and
treatment facilities)

A first system was
comprised of a single
water and wastewater
plants, multiple sources
(imported water,
groundwater aquifer, and
surface water) and two
demands centers
(domestic and
agricultural)

The SFLA was able to
generate good solutions for
both the problems

A second system
comprising of six users –
three domestic areas, one
industrial, one
agricultural, and one
large outdoor area – and
three wastewater
treatment plants

(continued)
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Table 6 | continued

Author(s) (year) Technique used Work and objectives
Case studies/problems
considered Key findings

Montaseri
et al.
(2015)

GA The study presented a
simulation–optimization
model for managing the
urban stormwater using the
MUSIC model as a
simulator and genetic
algorithm (GA) as an
optimizer. The optimization
model involves minimizing
the total cost of the life
cycle of the urban
stormwater treatment
devices as the objective
function

The case study area located
in Central Canberra,
Australia

The approach helps in the
identification of the most
appropriate treatment train
setting for the post-
development scenario,
considering cost and water
quality aspects, and
concluded that the
optimized treatment
devices were effective
means to remove
pollutants from urban
stormwater runoff

Swan et al.
(2017)

NSGA-II NSGA-II and Monte Carlo
approaches were used to
optimize operational
regimes in water treatment
works (WTW) considering
the objectives of minimizing
the operating cost and
failure likelihood of a WTW

The hypothetical case study
data were used, which
was based in a rural
location with water
abstracted from a
lowland reach of a river
that impounded in a
reservoir prior to
treatment

Static models were found to
be more suitable for whole
WTW optimization
modeling and offered the
benefit of the reduced
computational burden

Raseman
et al.
(2020)

Borg MOEA The Borg MOEA is used to
optimize water treatment
problems with five
objectives. The first two
objectives represent the risk
of violating disinfection
byproduct regulations
(minimize the frequency of
elevated total
trihalomethane and
minimize the frequency of
elevated Haloacetic acids),
while the remaining
objectives represent
operating costs (minimize
solids produced, minimize
lime dose required,
minimize carbon dioxide
dose required)

The case study located in
the Cache la Poudre
(CLP) River in northern
Colorado, and considers
a hypothetical utility that
must treat water from the
river

The study infers that
improving the resilience
and affordability of existing
water treatment plants is
critical for the safety and
financial viability of
drinking water systems and
simulation–optimization
framework with Borg
MOEA helps to generate
various treatment strategies
for decision making by
water manager
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DISCUSSION

Meta-heuristics for decision making?

The wide range of the above applications shows that meta-heuristics is an emerging research area for
solving a variety of water resources problems. There is also a growing interest for integrated water
resources management frameworks, where the conventional disciplinary boundaries in water
resources need to be reconsidered, and future management frameworks have to address different
complexities that may arise due to high nonlinearities, a wider range of uncertainties, integration of
large system components, etc. These issues pose significant challenges and motivate the need for
EAs applications to advance adaptive decision making under uncertainty. Also, it is important to
a.silverchair.com/h2open/article-pdf/3/1/135/863175/h2oj0030135.pdf



Table 7 | Applications of EA and SI meta-heuristic methods for the watershed management and fluvial systems

Author(s) (year) Technique used Work and objectives
Case studies/problems
considered Key findings

Yeh & Labadie
(1997)

MOGA Application of MOGA for
multi-objective watershed-
level planning of stormwater
detention systems for
minimization of detention
system cost, sediment
loading, providing
supplemental water supply,
and maximizing system
reliability

Upstream branch of
Pazam River in
southern Taiwan

Successive Reaching Dynamic
Programming (SRDP) can
lead to trade-off solutions
between detention system
cost and detention effect by
executing the algorithm for
a range of discrete values of
maximum flow. However,
MOGA can generate trade-
off solutions for multiple
objectives much more
efficiently

Harrell &
Ranjithan
(2003)

GA Planning and design of
detention ponds by
considering land
management as well as
decisions on pond location
and sizes considering
minimization of the cost of
pond and maximization of
removal efficiency

City Lake watershed
in High Point, NC

The integrated planning and
design of ponds found more
cost-effective than setting
one performance and site
conditions for all the ponds.
Incorporating land-use
allocation associated with
future growth can lead to
lower-cost designs.

The GA-based method flexible
to allow the incorporation of
more complex simulation
models to estimate pollutant
loading and removal

Muleta &
Nicklow
(2005)

GA and SPEA Integration of GA and SPEA
with SWAT, and
replacement of the SWAT
simulations with ANN,
considering minimization of
erosion and sediment yield
or maximization of net
agricultural profit (for
single-objective
formulation); and minimizes
erosion and sediment yield
while simultaneously
maximizing individual farm-
based income that accrues
from growing corresponding
crops (for multi-objective
formulation)

Big Creek watershed,
Southern Illinois

Replacement of SWAT by
ANN results in 84%
reduction in computational
time required. ANN model
trained using hybrid EP and
BP algorithms was found to
be more efficient and
effective than EP or BP
alone

Perez-Pedini
et al. (2005)

MOGA Distributed hydrologic
modeling of an urban
watershed and combined
with GA to determine the
optimal location of
infiltration-based best
management practices
(BMPs), for minimization of
project cost and watershed
flooding

Aberjona River
watershed,
Massachusetts

The study found 20%
reduction in the watershed
peak flow by the application
of BMPs to fewer than
200 HRUs (1 HRU¼ 120�
120 m plot). An incremental
approach targeting the more
critical areas at initial stages
and less critical areas in the
future can be practised, as
the optimal locations of only
a few BMPs can be a subset
of the optimal locations of a
much larger set of BMPs

(continued)
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Table 7 | continued

Author(s) (year) Technique used Work and objectives
Case studies/problems
considered Key findings

Lee et al.
(2012)

Scatter search
and NSGA-II

Development of System for
Urban Stormwater
Treatment and Analysis
Integration (SUSTAIN) and
its application for the
watershed-scale design of
stormwater BMPs, for
minimization of the cost

An urban watershed
in Kansas City,
USA

SUSTAIN was found to be a
useful tool which can be
applied by various
practitioners, municipalities,
and watershed groups at the
regional and local levels to
address diverse management
practice planning questions
in a wide range of
conditions

Karamouz &
Nazif (2013)

NSGA-II Development of a multi-
criteria optimization model
to select BMPs for flood
management in urban
watershed systems
considering climate change,
considering minimization of
flood volume and
maximization of the
drainage system’s reliability

An urban watershed
located in the
north-eastern part
of Tehran, the
capital of Iran

The optimization results show
that the cost of BMP
development is a governing
factor in system reliability
and expected flood damage
assessment. A small change
in BMP cost and their
application scheme may
result in significant
improvements in system
operation

Artita et al.
(2013)

Species
Conserving
Genetic
Algorithm
(SCGA)

Integration of the semi-
distributed watershed
model, Soil and Water
Assessment Tool (SWAT)
and SCGA for minimization
of the total cost of BMPs

Watershed in
southern Illinois

SCGA-SWAT is found to be an
efficient tool for solving
watershed planning and
management problem.

Further developments may
include maintenance cost
and land-use decisions

Shamsudin
et al. (2014)

PSO The study concerns detention
ponds based on best
management practices for
the treatment and control of
urban stormwater.
Analytical Probabilistic
Models (APM) and PSO
method were used to
develop the optimal
combination of pond
volume and outflow that
yield the minimum cost

The case study area
of Kuala Lumpur
in Malaysia

The comparison of the results
of PSO with APM showed
that the PSO is more
accurate as it does not need
discretization of outlet size
and found to be more
robust, computationally
cheaper and faster to
implement

Hang &
Chikamori
(2017)

DE, ES DE and ES approach applied
to the calibration of the
long- and short-term runoff
model (LST model) to
simulate the daily rainfall-
runoff process. The study
used three objective
functions of the Nash–
Sutcliffe efficiency
coefficient, root mean
square error, and mean
absolute error, for
evaluating the simulation
accuracy of the LST model

Case study of the Be
River catchment
located in southern
Vietnam

DE technique found to give
slightly better performance
and more stable solutions
than those found by the ES
technique during both
calibration and validation
periods

(continued)
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Table 7 | continued

Author(s) (year) Technique used Work and objectives
Case studies/problems
considered Key findings

Aminjavaheri
& Nazif
(2018)

GA, NSGA-II The study used GA and
NSGA-II, along with
SWMM and Management
Option Rank Equivalence
(M four parameters
including the urban percent
imperviousness, the
depression storage of
pervious surfaces, the curve
number, and the Manning’s
roughness coefficient of
conduits are the most
effective parameters ORE)
approach to develop the
robust optimal set of BMPs
for urban runoff quantity
management in data-poor
catchments. The three
objective optimization
model consists of
minimizing the outfall
runoff volume, minimizing
the BMP costs, and
minimizing the system
vulnerability

The urban basin
located in the north
of Tehran, Iran

After modeling the study area
in the SWMM model, the
most effective parameters
were determined using the
LH-OAT sensitivity analysis
and found that four
parameters of urban percent
imperviousness, the
depression storage of
pervious surfaces, the curve
number, and the Manning’s
roughness coefficient of
conduits were the most
effective parameters in
calibration. The proposed
MORE approach helps to
manage the urban surface
runoff optimally in a way
that the flood damage
potential is minimized by
the minimum cost
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identify the problem properties across the different water resources field domains (such as watersheds,
surface water, groundwater, reservoirs, water supply, etc.) that are posing computational barriers for
large-scale water resources systems. There is a greater need to engage meta-heuristics-based optimiz-
ation frameworks for improved decision making in water resources management.

Advantages of EAs as compared with conventional methods of optimization

While applying for practical problems, the EAs offer several benefits that include conceptual simpli-
city, flexibility, and robust response to changing environments and their ability to self-adapt the
search for optimum solutions on the evolution. EAs have broad applicability, since, with the
same procedure, they can be applied to any problem that can be expressed as a function optimiz-
ation task (e.g., discrete combinatorial problems, continuous-valued parameter optimization
problems, mixed-integer problems, and others). In contrast, the conventional techniques might be
applicable only to continuous values or other restrictions on constrained sets. Many times, the
objective or response surfaces modeled in practical problems are often multi-modal, and the conven-
tional gradient-based approaches rapidly converge to local optima, which may return unsatisfactory
performance. For simpler problems, where the response surface is strongly convex, the EAs do not
perform as well as traditional optimization methods (e.g., gradient-based methods are designed to
take advantage of the convex property of surface). EAs offer significant advantages for real-world
problems with multi-modal functions. Also, in case of applying LP method to problems with non-
linear objectives and/or constraints, which offers an almost certainly incorrect solution because
of the simplifications or assumptions required for the technique. In contrast, EAs can directly incor-
porate any kind of arbitrary objectives and constraints. Also, the conventional methods of
optimization are not robust to dynamic changes in the environment and often require a complete
restart to provide a solution (such as DP technique). In contrast, EAs can be used to adjust solutions
a.silverchair.com/h2open/article-pdf/3/1/135/863175/h2oj0030135.pdf



Table 8 | Applications of EA and SI meta-heuristic methods for calibration or parameter estimation of hydrological models

Author(s)
(year) Technique used Work and objectives

Case studies/problems
considered Key findings

Wang
(1991)

GA Application of GA for
calibration of a conceptual
rainfall-runoff model for
minimization of the sum of
squares of differences
between computed and
observed discharge

Xinjiang rainfall-runoff
model for the Bird
Creek catchment data

GA performed efficiently for
the problem, attaining a
global peak 8 times out of
10 trial runs

Franchini
&
Galeati
(1997)

GA, Pattern Search
(PS)

Analysis of various GA
schemes (varying in terms
of the mutation and
crossover operators) and
their robustness and
efficiency for calibration of
conceptual rainfall-runoff
model for minimization of
the RMSE between the
observed and model-
simulated flow values

An 11 parameter
distributed model
(ADM)

The parameterization of GA
does not create any major
difficulties, thus making
GA a robust algorithm. The
PS method performed
slightly better than all the
GA schemes involved and
consumed less
computational time
compared to GA

Liong et al.
(2001)

Accelerated
Convergence GA
(ACGA)

Development of a hybrid GA-
NN tool for generating
Pareto-optimal solutions of
calibration parameters for
different model responses
for minimization of the
residual error for different
model responses

UBT catchment in
Singapore

ACGA is found to be better
than SGA, VEGA, MOGA,
and NSGA in terms of
generating a wider range of
solutions in the initial
search space, faster
convergence rate, and more
optimal Pareto front

Khu &
Madsen
(2005)

NSGA-II Multi-objective calibration
with Pareto-preference
ordering is generated
considering different
number and combinations
of the objective functions
which are minimization of
the overall volume error,
RMSE, RMSE of peak flow
events and RMSE of low
flow events

NAM rainfall-runoff
model of the
Tryggevaelde
catchment in
Denmark

For highly correlated
objective functions, a small
number of Pareto-optimal
solutions were generated.
On comparing the
solutions obtained using
single-objective
optimization, all the
solutions were within the
bounds of those obtained
using single-objective
calibration and the spread
of the Pareto-optimal set
was small, indicating good
compromise solutions. The
NSGA-II can be used for
the calibration of model
parameters

Zhang
et al.
(2009)

GA, SCE, PSO,
DE and artificial
immune system
(AIS)

Testing of five optimization
algorithms for the
automatic parameter
calibration of the SWAT
model considering
maximization of NSE

Yellow River
headwaters watershed
(YRHW), Reynolds
Creek Experimental
Watershed (RCEW),
Little River
Experimental
Watershed (LREW),
and Mahantango
Creek Experimental
Watershed (MCEW)

No optimization algorithm
could perform consistently
better than the other
algorithms for all four
watersheds, implying the
complexity of the problem.
The study noted that GA
could be considered as the
first choice for getting
global optimum solutions
and PSO for getting
solutions with lesser
computational efforts

(continued)
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Table 8 | continued

Author(s)
(year) Technique used Work and objectives

Case studies/problems
considered Key findings

Zou &
Lung
(2004)

Alternating Fitness
GA (AFGA)

Calibration of water quality
models for water quality
management using AFGA,
which comprises of
changing the fitness
function evaluations at
times throughout the
evolution steps for
minimization of the sum of
squared differences
between model generated
and observed data

Total phosphorus model
of the Triadelphia
Reservoir in Maryland

AFGA is capable of
generating a higher
diversity of solutions
compared to the normal
GA

Tigkas
et al.
(2016)

SCE, GA, and
Evolutionary
Annealing-
Simplex (EAS)

Comparison of the
effectiveness and efficacy of
three EAs for automatic
calibration of the
Medbasin-D Conceptual
Hydrological Model for
minimization of RMSE,
Mean absolute error
(MAE), Ratio of mean
absolute error to the mean
of observed discharge
(RMAE), and Maximization
of NSE, and Modified NSE
(MNSE)

Watershed of the island
of Crete in Greece

GA was the most efficient
among the three
algorithms, while SCE and
EAS required a more
exhaustive search by
reaching the maximum
allowed number of
functions evaluations in
most cases

Alamdari
et al.
(2017)

NSGA-II Development of an auto-
calibration tool to calibrate
the Storm Water
Management Model
(SWMM) and its
application for assessing
the effects of climate
change on water quantity
and quality considering
maximization of the
coefficient of determination
(R2) and Nash Sutcliffe
Efficiency (NSE), and
minimization of Percent
Bias (PBIAS)

Difficult Run watershed,
Virginia

The model was calibrated
and applied successfully to
the considered watershed.
However, the sources of
uncertainty in GCMs were
not considered in the study

Shin &
Choi
(2018)

SCE algorithm Application of combined SCE
and hydrologic model for
calibration of Grid-based
rainfall-runoff model
(GRM) for maximization of
NSE, maximization of
correlation coefficient and
minimization of
normalized RMSE
(nRMSE)

The Danseong and
Seonsan catchments,
which are major
tributary catchments
of the Nakdong River
in South Korea

The performance of the SCE
model was found to be
appropriate and can be
used for the parameter
calibration of other
hydrologic models

(continued)
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Table 8 | continued

Author(s)
(year) Technique used Work and objectives

Case studies/problems
considered Key findings

Krishnan
et al.
(2018)

Shuffled Complex
Evolutionary
metropolis
algorithm
(SCEM-UA)

Parameter estimation of
SWAT using SCEM-UA
considering minimization
of RMSE

St. Joseph River basin,
USA

The major advantage of the
SCEM-UA algorithm is that
it helps quantify the
uncertainty of the model
parameters, along with the
calibration process and can
achieve the calibration
process in less number of
function evaluations of the
model as compared to
other optimization
algorithms

Mostafaie
et al.
(2018)

NSGA-II, SPEA,
MOPSO, and
Pareto Envelope-
based Selection
Algorithm II
(PESA-II)

Comparison of the multi-
objective optimization
techniques for calibration
of GR4 J model (a
conceptual hydrologic
model) using in situ runoff
and daily GRACE data for
maximization of the NSE
for flow and daily total
water storage

Danube River Basin,
located in the Central
and Eastern Europe

NSGA-II produced the best
results considering the
diversity-based metric,
while MOPSO produced
better results considering
the optimality criteria.

All the four algorithms found
to perform equally well
considering the cardinality
(no. of Pareto-optimal
solutions obtained)

Koppa
et al.
(2019)

AMALGAM Application of the DREAM
simulation model and
AMALGAM optimization
model for multi-variate
calibration of a large-scale
distributed hydrologic
model (Noah-MP) for
minimization of RMSE for
a different combination of
model responses:
Evapotranspiration (ET),
surface moisture (SM) and
Streamflow (SF)

Mississippi river basin The multi-variate calibration
process found to be much
more efficient than a single
variate calibration process

Tian et al.
(2019)

ε-NSGA-II Development and use of a
single-objective function
(i.e., minimization of the
summation of a power
function of the absolute
error between observed and
simulated streamflow with
the exponent of power
function) rather than
employing multiple
objectives for automatic
calibration of hydrologic
models

Model Parameter
Estimation
Experiment
(MOPEX)

The single-objective
optimization can achieve
better hydrographs as
compared to traditional
NSE efficiency for most
watersheds
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to changing environments; and the available population of evolved solutions offers a basis for
further improvement, and in most cases, it is not needed to reinitialize the population at random.
Thus, EAs proved to be effective, especially for problems that are intractable by classic methods
of optimization, and for cases where heuristic solutions are not accessible or generally lead to unsa-
tisfactory results.
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Table 9 | Applications of EA and SI meta-heuristic methods for groundwater remediation, groundwater systems, and
monitoring network design

Author(s) (year) Technique used Work and objectives
Case studies/problems
considered Key findings

Dougherty &
Marryott (1991)

Simulated
Annealing
(SA)

Application of SA for application
of groundwater management
problems considering
minimization of cost (cost of
well installation, operation, and
maintenance, costs associated
with water treatment and
disposal and costs of failing to
achieve specific management
goals)

Dewatering problem
with zooming and
contamination
problem

Simulated annealing finds
good solutions to
problems with highly
variable objective
functions, whereas
gradient methods are
very good at finding
local solutions for the
smooth objective
function

McKinney & Lin
(1994)

GA Application of GA for
maximization of pumping;
minimization of cost of water
supply; and minimum cost
aquifer remediation (solved as
three separate problems)

Three hypothetical
examples

GA proves to be more
efficient than traditional
methods like LP, NLP,
and DP, especially for
complex problems that
comprise of
discontinuous or highly
nonlinear or non-convex
problems

Ritzel et al. (1994) GA Application of GA (and two
variants of GA, vector
evaluated GA (VEGA) and a
Pareto GA) to a multi-objective
groundwater pollution
contaminant problem
considering maximization of
reliability (as a fraction of
plumes captured) and
minimization of system total
cost

Hypothetical
contamination
problem

Pareto GA performs better
than VEGA for zero
fixed cost solution and
obtains a Pareto front
similar to that obtained
via mixed-integer
chance-constrained
programming (MICCP)

Huang & Mayer
(1997)

GA Dynamic optimization
formulation for groundwater
remediation using GA
considering well locations and
pumping rates as the decision
variables considering
minimization of cost
(installation, pumping and
treatment cost)

A hypothetical,
homogeneous aquifer
system and a
spatially correlated
heterogeneous
aquifer system

The moving well location
model produced better
results as compared to
fixed well location
models. The model
results are found to be
more sensitive to well
locations rather than the
pumping rates. GA
found to be an effective
technique for solving the
GW remediation
problem, but more
efforts suggested for
improving
computational efficiency
for a larger problem
with more number of
decision variables

Wang & Zheng
(1997)

GA Simulation–optimization model
for GW remediation by
coupling GA with MODFLOW
and MT3D, considering
dynamic pumping rates for
minimization of the net present
value of remedial and
operational cost

A hypothetical
homogeneous test
problem and a real
case study at a site
near Granger,
Indiana

GA-based method has
specific advantages as
compared to gradient-
based methods such as
ease of handling non-
linearity, discrete
decision variables, able
to find optimal (or at
least sub-optimal
solutions), by
considering proper
population size and
number of iterations
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H2Open Journal Vol 3 No 1
172 doi: 10.2166/h2oj.2020.128

Downloaded from http://iwa.silverchair.com/h2open/article-pdf/3/1/135/863175/h2oj0030135.pdf
by guest
on 09 April 2024



Table 9 | continued

Author(s) (year) Technique used Work and objectives
Case studies/problems
considered Key findings

Sun & Zheng
(1999)

GA, DP Dynamic optimization of long-
term groundwater management
problem (to determine the
optimal pumping rates) using
DOMODF optimization tool
based on differential dynamic
programming linked with
MODFLOW as the simulation
tool for minimization of cost

Two hypothetical
problems

The combined use of GA
(or DDP) and
MODFLOW could form
an effective tool for
solving GW
management problems.
The method has certain
shortcomings as DDP
converges only locally
while DP converges
globally; DDP is also
more error sensitive
than GA; DOMODF
also subjected to the
effects of uncertainties
in calibrated flow
models

Smalley et al.
(2000)

Noisy GA Risk-based in situ bioremediation
design (which considers risks
related to human health and
the environment associated
with a contaminated site) for
minimization of the total cost
(capital and operating costs for
remediation wells, site
monitoring costs, additional
capital and operating costs
associated with remedial
systems)

An in situ
bioremediation case
study and a realistic
case study from
Borden site

Noisy GA is capable of
identifying highly
reliable designs from a
small number of
samples. It can serve as
an efficient tool for
modeling parameter
uncertainty and
variability

Yoon & Shoemaker
(2001)

Real-coded GA
(RGA)

Application of RGA to
bioremediation problem and
compared with that of binary-
coded GA (BCGA) for
minimization of the total
pumping cost

Two hypothetical
aquifers

RGA found to be more
computationally efficient
and accurate than
BCGA

Zheng & Wang
(2002)

GA Application of the simulation-
optimization (SO) methodology
(comprising of MODFLOW as
the simulation tool and GA as
the optimization tool) on real
case study for maximizing
Trichloroethylene (TCE) mass
removal

Massachusetts Military
Reservation (MMR)
in the north-eastern
United States

The GA-based SO
methodology could be
successfully applied on
desktop PCs.
Considerable cost
savings can be achieved
by adopting dynamic
pumping

Erickson et al.
(2002)

Niched Pareto
GA (NPGA)

Application of the multi-objective
optimization algorithm NPGA
for the optimal design of GW
remedial systems for
minimization of remediation
cost and contaminant mass
remaining at the end of the
remediation horizon

A hypothetical
contaminated GW
site for two, three
and 15 fixed well
locations cases

NPGA performed better
than SGA and RS,
especially in the case of
15 well scenarios
requiring 30% less
computational efforts as
compared to SGA.
NPGA lead to better
solutions in terms of
75% less remedial
contaminant mass

Shieh & Peralta
(2005)

Hybrid SA and
GA termed as
parallel
recombinative
SA (PRSA)

Application of PRSA for
optimizing in situ
bioremediation system design
considering minimization of
total system cost, and
minimization of cost of time-
varying pumping strategy

Hypothetical study area PRSA minimizes the total
system cost better than
SA and GA. Optimal
time-varying pumping
strategy requires 31%
less pumping cost than
optimal steady pumping
strategy

(continued)
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Table 9 | continued

Author(s) (year) Technique used Work and objectives
Case studies/problems
considered Key findings

Babbar & Minsker
(2006)

Multi-scale GA Application of multi-scale GA
(different than the normal GA
in the way it acquires
information about the fitness
function and the way it
manipulates the new
individuals) for GW
remediation problem with
minimization of the total
treatment cost

Hypothetical GW
remediation problem
and a field-scale GW
application at
Umatilla Chemical
Depot in Oregon

The multi-scale GA leads
to computational savings
of around 77% for a
hypothetical case and
78% for the real case
study

Wu et al. (2006) MCSGA and
noisy GA

A comparison of Monte Carlo
Simulation GA (MCSGA) and
Noisy GA (NGA) for the
optimal design of sampling
network design under
uncertainty in hydraulic
conductivity for minimization
of the total of well installation
and sampling cost

A two-dimensional
confined aquifer
measuring600 m long
in the x-direction and
400 m wide in the y-
direction

The solution obtained
using NGA leads to 45%
cost saving as compared
to that obtained using
MCSGA. Compared to
MCSGA, NGA reduces
the optimization
runtime by a factor of
6.5

Park et al. (2007) GA Development of an Enhanced
natural attenuation (ENA)
optimization process for
optimal GW remediation
design for minimization of the
remediation cost

A hypothetical 2D
unconfined aquifer

The ENA process led to
improved efficiency of
the remediation strategy

Mantoglou &
Kourakos (2007)

MOGA Development of a methodology
for optimal remediation of GW
aquifers under hydraulic
conductivity uncertainty for
minimization of contaminated
groundwater in the aquifer and
minimization of remediation
cost

A hypothetical
orthogonal
unconfined aquifer

The MOGA has produced
good results. In the
example considered,
only 11 realizations out
of 100 were found to be
critical, implying 89%
saving in computational
time

Tang et al. (2007) ε-NSGA-II Demonstration and evaluation of
the Master-Slave (MS) and
Multiple-Population (MP)
parallelization schemes for
NSGA-II considering
minimization of the monitoring
cost (for GW monitoring
application)

DTLZ optimization
function, hydrologic
model calibration
test case for the Leaf
River near Collins,
Mississippi, and a
GW monitoring
application

The ε-NSGA-II method
found to be generating
good Pareto-optimal
solutions. Multi-
population was found to
be superior to the
Master-slave scheme
only for the DTLZ
optimization problem,
while for other
problems, MS is found
to perform better than
MP

Chadalavada &
Datta (2008)

GA Development of a model for
optimal GW pollution
monitoring network design to
determine the optimal and
efficient sampling locations for
detecting pollution in GW
aquifers considering
minimization of the summation
of unmonitored concentrations
at different potential
monitoring locations; and
minimization of estimation
variances of pollutant
concentrations at various
unmonitored locations

An illustrative study
area comprising of a
hypothetical aquifer

The designed network of
optimal monitoring
wells is dynamic in
nature, which results in
economically efficient
designs. However, the
stochastic nature of the
processes involved has
not been explicitly
incorporated into the
model

(continued)
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Table 9 | continued

Author(s) (year) Technique used Work and objectives
Case studies/problems
considered Key findings

Kobayashi et al.
(2008)

SA Development of a SA based SO
model for multiphase/
multicomponent flow
simulation, by incorporating a
parallelization procedure for
the optimization model
considering maximization of
the amount of methane
extracted from the wells

A two-phase (liquid,
gas)/ three-
component (water,
methane, air)
conceptual model,
and a coal mining
site in the Ruhr,
Germany

The SA based
methodology and
parallelization scheme
enhanced the
computational efficiency
of the overall procedure
almost linearly by the
number of processors in
the parallel computer

Bayer et al. (2008) GA Development of a
computationally efficient
method for stochastic
optimization problems which
involves multiple equally
probable realisations of the
uncertain parameters for
maximization of the pumping
rates of all wells

A synthetic
groundwater model
set-up

The computational
efficiency is improved
manifolds by applying
the stack ordering
procedure. In the case of
more advanced stack
ordering strategies,
almost 97% of the
computational efficiency
can be achieved. The
presented approach is
also independent of the
problem to be solved

Singh et al. (2008) Interactive
MOGA
(IMOGA)

Development of an interactive
multi-objective model for
groundwater inverse modeling
for estimating heterogeneous
GW parameters for
minimization of the calibration
error with respect to field
measurements, and a
qualitative objective that
reflects an expert’s qualitative
preferences

A hypothetical aquifer
case study consisting
of six pumping wells
and 16 observation
wells

The results obtained
without considering the
quantitative preferences
lead to sub-optimal
solutions. IMOGA
found to be an efficient
tool for incorporating
expert knowledge into
the multi-objective
formulation

Singh &
Chakrabarty
(2011)

NSGA-II Application of NSGA-II to solve
GW remediation problem
considering minimization of
remediation cost and
minimization of remediation
time

A hypothetical
confined multi-
layered aquifer

The NSGA-II generated a
good number of Pareto-
optimal solutions; and
noted that remediation
time plays a crucial role
in the optimal design of
GW remedial systems

Luo et al. (2016) Probabilistic
Pareto GA
(PPGA)

Optimal design of long-term
groundwater monitoring
network (LTGM), considering
the uncertainty in K-fields for
minimization of (i) the total
sampling costs for monitoring
contaminant plume, (ii) mass
estimation error, (iii) the first-
moment estimation error, and
(iv) the second-moment
estimation error of the
contaminant plume

A two-dimensional
hypothetical example
and a three-
dimensional field
application in
Indiana (USA)

The optimization results
show the high accuracy
of the PPGA. However,
the computational
burden was extensively
large when considering
the uncertainties

Ouyang et al. (2017) AMALGAM Application of AMALGAM for
GW remediation design and
comparison with NSGA-II for
minimization of the total
remediation cost, and
minimization of the
remediation time

A hypothetical
perchloroethylene
(PCE) contaminated
site

The AMALGAM results
incurred less
remediation cost and
required less
computational time as
compared to NSGA-II

(continued)
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Table 9 | continued

Author(s) (year) Technique used Work and objectives
Case studies/problems
considered Key findings

Alizadeh et al.
(2018)

DE Development and application of
an entropy-based method for
GW monitoring network
design for maximization of the
actual (net) value of the
information among wells

Eshtehard aquifer
monitoring network
in the central part of
Iran

The DE optimization-
entropy yields better
performance with a
larger amount of
information content
than the clustering and
the estimation error
methods

Seyedpour et al.
(2019)

GA Development of a coupled
groundwater flow and reactive
transport of contaminant and
oxidant using the Multi-
quadratic Radial Basis
Function (MRBF) in the
Meshfree method, and
optimization of the GW
remediation problem
considering maximization of
remediation contaminant
concentration and
minimization of the cost of the
remediation process

A point source of 0.5%
w/v potassium
permanganate
solution was
constructed in a
sandbox to map the
change groundwater
plume distribution
over time

The optimization
methodology employed
leads to not only delay
in the reaching time of
the contaminant to the
d/s region but also
decrease in the
contaminant
concentration

Song et al. (2019) ε-multi-objective
noisy memetic
algorithm
(ε-MONMA)

Optimal design of groundwater
monitoring network using a
surrogate for modeling the
uncertainty in k-field
considering minimization of
the monitoring cost, and error
objective functions in terms of
the mass of contaminant
plume, the estimated center of
contaminant plume, and
contaminant concentrations

A hypothetical
unconfined aquifer
600 m in longitudinal
extent, 400 m in
transverse extent,
and a model
thickness of 10 m

The ε-MONMA gave a
good performance. The
surrogate assisted design
outperforms the
deterministic and Monte
Carlo simulation-based
design in terms of huge
savings in the
computational time
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Which evolutionary algorithm to use?

There were several variants of EAs. Each of the meta-heuristic algorithms has its own advantages and
disadvantages. Among the nature-inspired EAs, GA is one of the oldest and popular techniques that
has several applications in the water resources field. The main advantages include its ability to handle
nonlinear, nonconvex, nondifferentiable functions, multi-modal solutions and can provide optimal or
near-optimal solutions to a given problem. Real-coded GA has advantages over binary-coded GA for
real-valued decision variable problems. However, GA requires the selection of appropriate genetic
operators among several versions available and proper tuning of the parameters such as probabilities
of crossover and mutation, population size, etc. Also, the optimization process may take higher com-
putational time for complex water resources problems such as groundwater systems monitoring
design and remediation, WDN problems, etc., as it may involve a time-consuming simulation–optim-
ization process. The other popular algorithm, differential evolution, also has advantages similar to
that of GA; apart from that, it is proved that DE has faster convergence and reliable, optimal solutions
for numerical optimization. DE also has limitations in selecting an appropriate version of DE and
algorithm parameters. Similarly, other EAs (like SCE, ES) are found to have similar capabilities
and difficulties while solving water resources optimization problems. A brief summary of the compari-
son of basic characteristics and quality performance features of different EA (GA, DE, ES) are given
in Table 10. However, the recent developments of self-adaptive EAs (e.g., SADE) are found to be over-
coming this issue and helping the tuning of the algorithm parameters as the search progresses.
a.silverchair.com/h2open/article-pdf/3/1/135/863175/h2oj0030135.pdf



Table 10 | Comparison of basic characteristics and quality performance features of different evolutionary algorithms of genetic
algorithms (GA), differential evolution (DE), and evolution strategies (ES); and swarm intelligence algorithms of particle
swarm optimization (PSO), ant colony optimization (ACO), and artificial bee colony (ABC) algorithms

Feature/algorithm GA DE ES PSO ACO ABC

Representation Binary or real
valued

Real-valued Real-valued Real valued Discrete,
graphical
representation

Real valued

Fitness Scaled objective
value

Objective function
value

Objective
function value

Objective
function value

Scaled objective
value

Scaled objective
value

Operations for
the evolution
of new
solutions

Crossover
(main operator),
Mutation
(secondary
operator)

Mutation
(main operator),
Crossover
(secondary
operator)

Mutation
operator (only
operator)

Particle velocity
and position
updating rules

Updating of
pheromone
intensities,
heuristic
information

Bee position
updating rules
and stochastic
process

Selection
process

Deterministic,
extinctive

Probabilistic,
preservative

Probabilistic,
preservative

Deterministic,
extinctive

Probabilistic,
preservative

Probabilistic,
preservative

Suitable for
nonlinear
problem? type
of variables

Yes, Real/discrete
value

Yes, Real/discrete
value

Yes, Real/
discrete value

Yes, Real/
discrete value

Yes, Discrete
value

Yes, Discrete/
real value

Preferred
population
size,
generations
(or iterations)

Small to medium,
large

Small to medium,
large

Medium, large Larger, medium Medium, large Medium, large

Influence of
population
size on
solution time

High Low Low Low Medium-to-high Medium-to-high

Influence of best
solution on
population

Medium Less Less High Medium Medium

Ability-to-
parallelization
of the search

Yes Yes Yes Yes Yes Yes

Tendency for
premature
convergence

Medium Low Low-to-medium Medium-to-high Medium Medium-to-high
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Which SI algorithm to use?

Several variants of the SI algorithms (like PSO, ACO, ABC, HBMO, FFA, BA, etc.) were proposed
in different studies. The SI methods are basically inspired by co-operative group intelligence prin-
ciples of the swarm and proved to be other classes of alternative meta-heuristic techniques for
solving different kinds of optimization problems in water resources. Similar to EAs, SI algorithms
are population-based random search techniques guided with some heuristics, which can also handle
different types of problem complexities (like nonlinear, nonconvex, nondifferentiable functions,
multi-modal solutions, etc.). But their applicability and convergence characteristics may vary from
problem to problem. For example, PSO is a technique applicable for real-valued decision variables,
has advantages of easiness in coding the algorithm, provides fast convergence to simple numerical
problems, and requires low computational time. However, fine-tuning of algorithm parameters (e.g.,
inertia weight, social, and cognitive parameters) is required for getting optimal solutions and con-
sistently good performance from the method. But, the basic PSO may face difficulties like
premature convergence to locally optimal solutions for higher dimensional, large-scale water
a.silverchair.com/h2open/article-pdf/3/1/135/863175/h2oj0030135.pdf
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resources problems. Several studies proposed different strategies for the improvement of the PSO
performance (like EMPSO proposed by Kumar & Reddy 2007). The ACO method is also a
random search method guided by probabilistic rules and some heuristics (i.e., pheromone laying be-
havior of ants) and can produce global-optimal solutions. But ACO is applicable effectively only for
a set of problems that involve decision variables with discrete values (for example, the WDNs pro-
blem can be represented in graphical form/shortest path that can be easily covered by the ants, and
it can be modeled with pheromone trail laying behavior). There are several variants of ACO algor-
ithms. It has similar advantages to other EAs in handling different kinds of complexities. However,
the performance of ACO is sensitive to its algorithmic parameters, so it may require tuning of the
parameters such as relative pheromone trail, heuristic information, evaporation rate, etc. while sol-
ving large-scale problems. Other SI algorithms (like ABC, HBMO, CS, FFA, BA algorithms) also
have similar capabilities and limitations like that of PSO. A brief summary of basic characteristics
and quality performance features a comparison of different EAs (PSO, ACO, and ABC) that are pre-
sented in Table 10.
It should also be noted that different studies have presented different algorithms for solving

water problems and noted that some algorithms are relatively better than other methods. But,
the inferences made may be applicable for those problems, which may not be generalized to
one or not applicable for all types of problems, as each problem may have varying complexity
depending on the dimension of the problem and existing relationships for the problem in hand.
So, proper selection and usage of the algorithm for a given problem should be based on the pro-
blem type and its characteristics.
Hybrid meta-heuristic methods?

Research studies also reported that hybrid meta-heuristic methods that combine global-search with
local search algorithms found to be providing improved performance for large-scale water resources
optimization problems. Also, several strategies like problem-specific heuristics, chaotic concepts into
the initialization of population, elitism concepts, self-adaptive schemes, etc., are incorporated into SI
algorithms to improve the performance of the existing methods and to get consistent satisfactory
results. Also, to handle the issues related to multi-objective optimization, different studies have
suggested different schemes for getting an array of uniform widespread and true Pareto-optimal
solutions for different kinds of practical problems.
FUTURE WORK AND RESEARCH DIRECTIONS

There are several issues which require more research efforts to improve the solutions to the practical
problems in the water resources engineering area. Some of these issues and future research directions
are listed below.
Improvement in algorithm and solution methodology

There is a great deal of research on-going on the development of the new algorithms, a better under-
standing of the algorithm’s performance and search behavior, analyzing the suitability in handling the
different complexities of the problems, etc. As the meta-heuristic methods are population-based
search algorithms and involve several parameters (like population size, maximum generations/iter-
ations, other algorithm-specific parameters) to start the optimization procedure, and also the model
performance is sensitive to the selected parameters. This warrants for proper fine-tuning of par-
ameters before applying to a given problem. To address this issue of how to overcome the effect of
a.silverchair.com/h2open/article-pdf/3/1/135/863175/h2oj0030135.pdf
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the sensitivity of the parameters on the performance of the algorithm, recently, several studies
explored self-adaptive schemes for overcoming this issue. For improving computational efficiency,
studies also explored guided initialization of population, parallelization schemes (parallel processing
that uses two more CPUs for computations saves time, which is well suited for population-based
EA/SI methods that use simulation–optimization framework for solving complex real-world pro-
blems), the multi-algorithm search that combines two or more (global and/or local) search
algorithms, etc. But still, there is a scope for improvements and more research is needed in this
area. Moreover, it is important to develop knowledge related to the suitability of various optimization
methods for a particular type of water resource problem and the incorporation of domain knowledge
in the search, which can also help in improved solution methodology.

Search space reduction and improving computational efficiency

The complexity of the real-world problems (especially for problems in the areas of water distribution
systems, groundwater systems management, calibration of distributed hydrological models) is increas-
ing day-by-day, and it is expected to continue critical and promising research areas in the future also.
Recently several studies are focusing on the issues of how to reduce the search space and guide the
algorithms to speed up the convergence and/or improve the reliability in achieving global-optimal sol-
utions. Schemes like fitness approximation, parallelization, and multi-algorithm search frameworks
have been explored. But, still much more research is needed to come up with better strategies.

Model inputs and uncertainty

Since the model inputs may involve different kinds of uncertainty, there is a necessity to explore how
to best represent various types of uncertainties (such as aleatoric and epistemic uncertainty) in the
optimization model and incorporate them into decision making. Also, future uncertainties due to cli-
mate change, urbanization, etc., might affect the planning of water resources systems, and exploring
new frameworks and evolving flexible design is one of the promising areas for future research.

Solution post-processing and decision making

The solutions obtained by solving an optimization model are sensitive to a given input variables con-
dition. This poses doubts of how reliable are the solutions, considering the changing conditions or
input variable values. In the case of multi-objective optimization (with more than two objectives),
the MOEAs generate a large number of Pareto-optimal solutions. Then the challenge is how to use
them for decision making, as it is difficult to visualize and choose the solutions. So, more efforts
are needed to come up with effective decision-making procedures, which can help and equip the
users in envisaging the trade-offs and assist in arriving at few practical alternatives and/or facilitate
effective decision making under several conflicting goals.
CONCLUDING REMARKS

Real-life water resource planning and management problems may involve several complexities and
may pose several challenges for decision-makers. The use of evolutionary algorithms for solving
numerical and practical optimization problems has become very attractive and extensive in the last
three decades. Several new meta-heuristic algorithms including EA (such as GA, DE, SCE, etc.)
and SI algorithms (such as PSO, ACO, ABC, SFL, HBMO, HS, FFA, CS, BA, etc.) are being proposed,
which showed improved performance for solving a variety of water resources problems. The main
advantage of EAs is the usage of a population of potential solutions that explore the search space
a.silverchair.com/h2open/article-pdf/3/1/135/863175/h2oj0030135.pdf
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simultaneously, exchanging information among them, and uses only objective function values. Also,
EAs are stochastic search algorithms, can move to any complicated search apace and locate near-opti-
mal (or optimal) solutions in reasonable computational time. They can provide solutions to any
complex optimization problem that is difficult to be solved with the conventional NLP methods
due to their nature that may imply discontinuities of the search space, nondifferentiable objective
functions, imprecise arguments and function values.
Some of the remarks on the current state-of-the-art in EAs:

• There is no general algorithm that can be applied efficiently to all problems, as the efficiency varies
as a function of problem size and complexity. However, the incorporation of problem-specific
knowledge and heuristics may help to achieve faster and efficient solutions to a real-world problem.

• EAs may require calibration of the search parameters to ensure efficient convergence. The self-
adaptive EA as part of improving the solution methodology can help to arrive quickly at near-optimal
(or optimal) solutions, thereby helping water resources engineers in a better decision-making process.

• For complex problems, EAs may require a large number of simulations to find optimal solutions. In
such cases, the use of meta-modeling, fitness approximation, parallelization schemes may help to
speed up the simulation–optimization process, thereby helping in improving computational
efficiency.

• The different types of problem complexities and their associated uncertainties motivate a great need
for advances in multi-objective search, interactive optimization, and multi-algorithm search
frameworks.

Therefore, EAs continue growing interest among the research community, and there is a tremen-
dous potential for solving many practical water resources problems.
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