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Abstract

The American Water Works Association (AWWA) has developed and disseminated advanced methods and
performance indicators for assessing and reducing water losses in North America, based in large part on the
methods and indicators developed by the International Water Association (IWA). However, many utilities and
regulators still use the old, inaccurate, %NRW indicator. A robust, quantitative assessment of the technical
rigor of water loss indicators was needed but could not be found in the literature. So, an innovative approach
was developed, using Frontier Analysis which provided such a score of ‘technical rigor’. This paper presents
this method, applied to three datasets from North America, assessing 15 candidate indicators for total water
losses, apparent losses and real losses. The results provide quantitative ‘scores’ of the technical rigor of the
candidate indicators. Indicators with relatively high scores align with indicators used in the IWA best practices.
Other indicators, such as the %NRW indicator, were found to have low technical rigor. The conclusion of the
paper summarizes the rigorous indicators, and suggests areas for further application of this method, and for
further research.
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Highlights

• There has been no in-depth research or analysis on the technical rigor of water loss indicators.

• A method to make such an assessment was developed by the author, based on Frontier Analysis.

• The method was applied to three datasets of validated water loss audits from North America for 15 candidate

water loss indicators.

• The results clearly quantify indicators which are rigorous, and which are not.

• The commonly used %NRW indicator has low technical rigor.
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Graphical Abstract
INTRODUCTION

Water utilities in North America face significant challenges from climate change, population growth,
aging infrastructure, increasing non-revenue water, and declining consumption and revenues. The
reduction and control of water losses can mitigate these challenges. In order to conduct a successful
water loss control program, water utilities need ‘technically rigorous’ performance indicators to assess
and benchmark performance, set targets, plan programs, and monitor and refine their work.
The American Water Works Association (AWWA) has developed and disseminated advanced

methods and performance indicators for managing water losses, based in large part on the methods
and indicators developed by the International Water Association (IWA). These methods encourage
the use of indicators based on unit volumes of real loss and apparent loss. However, many utilities
and regulators still use the old, inaccurate, %NRW indicator which has been shown by many authors
to be misleading (Liemberger et al. 2007; Lambert et al. 1999, 2014; AWWA 2016; Trachtman &
Wyatt 2019). The use of this flawed indicators leads to inaccurate target setting, poor planning, and
inferior results of water loss reduction and control programs.
A robust method was needed to demonstrate the technical rigor of each of the AWWA/IWA indi-

cators, but there had not been any studies to justify the adoption of the more accurate indicators.
Therefore, the author developed a method based on Frontier Analysis to create a water loss efficiency
score and compare indicators to that score, using simple regression. Indicators which had a high
regression fit would be technically rigorous and those with a low regression fit would not be. This
method was conducted for 15 different indicators, across three datasets from different parts of
North America. The results showed that common percentage-based indicators had low technical
rigor, but the unit volume and most AWWA/IWA recommended indicators had high technical rigor.
This paper is organized as follows. The section Background to the methodology provides back-

ground material including the methods used to collect and analyse water loss data in utilities in
North America, the minimal amount of previous work on the assessment of water loss indicators
and the general approach used in this paper to obtain an accurate ‘technical score’ of indicators.
The section entitled Datasets used and indicators assessed reviews the attributes of the datasets
used. The Methodology section provides a detailed explanation of the methodology and the Results
a.silverchair.com/h2open/article-pdf/3/1/102/862906/h2oj0030102.pdf
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and discussion section provides the results. Finally, the Conclusions section outlines the conclusions
of the work, and an Appendix provides detailed statistical results.
BACKGROUND TO THE METHODOLOGY

Water loss assessment in North America

In 2010, the AWWA developed a spreadsheet-based tool known as the Free Water Audit Software
(FWAS), consistent with the AWWA/IWA methods and indicators as detailed in the AWWA
Manual M36 (AWWA 2009, 2016). The software prepares a (water loss) water balance and a set of
indicators values. The software also provides a ‘data validity score’ for the audit, based on practices
used to determine the input parameters. There is also a standard AWWA validation process where
third party reviewers work with utilities to conduct QC efforts to improve audit accuracy (Andrews
et al. 2016a, 2016b). Since the initial launch with a small number of ‘volunteer’ utilities, the software
has been improved and its use greatly expanded. Currently there are many hundreds of annual FWAS
audits, many of which have been required by State regulators. An analysis of basic results of the use of
FWAS from 2010 to 2015 was published in 2016 (Sayers et al. 2016).

Previous research on the accuracy of water loss indicators

There have been very few studies which have assessed the accuracy or suitability of different water
loss indicators. There is a body of literature on the flaws of the %NRW indicator, including those
cited in the Introduction. More detailed assessments were carried out in France in response to
new regulations instituted in 2007, which stipulated the use of the %NRW and a Linear Leakage
Index (LLI) in m3/km/day. Renaud (2009) described a linear regression analysis of the LLI and
found it to be highly sensitive to connection density, and proposed a Customer Leakage Index, in
m3/connection/day as a better indicator of unit real losses.

Principal concept of the methodology used in this paper

The key premise of the methodology used in this paper is as follows. If there was an accurate method
to analyze a group of water loss audits to obtain a series of quantitative water loss efficiency scores,
then comparison and correlation of various candidate indicators to those water loss efficiency scores
would reveal the technical rigor of those candidate indicators. A strong correlation between the
efficiency score and the indicator would demonstrate a high technical rigor of the candidate indicator.
If the relationship is highly scattered and has a weak correlation, the candidate indicator would have
low technical rigor.

Overview of Frontier Analysis and data envelopment analysis for utility efficiency estimation

There are two options for methods to accurately ‘analyze a group of water loss audits to obtain a series of
quantitative water loss efficiency scores’ – Frontier Analysis (FA) and Data Envelopment Analysis (DEA).
As outlined in Abbot & Cohen (2009), FA is a parametric approach that provides a single output of effi-
ciency based on a series of input parameters. FA has the advantages of successfully analyzing data with
some uncertainty, and handling economies of scale in utilities; but requires a mathematical form to be
selected. FA lends itself to the data available from water loss audits, and can be conducted in a spread-
sheet which aligns with the capabilities of many utilities and regulators in North America.
The alternative, DEA is a non-parametric linear programming technique, which has the advantages

of not requiring any specific formulaic structure and being able to use multiple inputs and provide
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multiple outputs. It is generally best used in large datasets as it is sensitive to outliers. It also requires
careful selection of input and output variables. In practical terms, it requires linear programming skills
and software and therefore is more complex to implement by many North American water utilities
and regulators, especially for small organizations.
Frontier Analysis has been used in the water utility sector for many years to assess overall utility per-

formance/efficiency. Abbot & Cohen (2009) published an overview paper outlining several dozen
applications of FA and DEA in countries around the world. Specific country analyses using FA include
Filippini et al. (2008), Ferro & Romero (2009), Worthington (2014), Ferro et al. (2014), Akimov &
Simshauser (2018), Molinos-Senante & Maziotis (2019) and Murwirapachena et al. (2019). Some of
these and other studies have compared the results of FA to those of DEA. Generally, these analyses
examine the overall performance/efficiency of water utilities, often measured in unit cost of service,
or output (customers served, water produced) based on multiple explanatory variables. It is interesting
to note that nearly all these studies use NRW as an input but use the flawed %NRW volume indicator.
Frontier Analysis for water loss performance assessment

Use of Frontier Analysis for assessment of NRW began with the WRc report for the UK regulatory
agencies (EA & OFWAT 2008). The approach developed a model that best predicted annual real
losses using a number of explanatory factors. By looking at actual, observed real losses compared
to the predicted real losses, a ratio can be calculated to rank the performance of the individual areas.
Pearson & Trow (2012) conducted a Frontier Analysis to assess comparative real loss performance in

33 district metered zones (DMZs) in a large UK water utility. The effort concluded that Frontier Analy-
sis was very useful in comparing performance in different DMZs – to prioritize zones for interventions.
Sandraz et al. (2014) describes a study of the determinants of annual real losses, using multivariate

regressions with the number of connections, mains length, pressure, pipe diameter, pipe breaks. Com-
parisons of modeled and observed real loss showed unsatisfactory correlations. The number of
connections was the most significant explanatory variable, and, curiously, pressure was essentially
not significant at all.
Wyatt et al. (2015) conducted a Frontier Analysis on real loss efficiency in 31 utilities in North

America, based on standard water loss audit results and additional detailed distribution pipe network
data, including mains burst rates, length and average age of existing pipe materials. Initial regression
model inputs included those data and length of mains, connection density, and average operating
pressure, with a logarithmic model form. Initial analyses showed that parameters such as the percen-
tage of cast iron pipe, and the product of age and % cast iron pipe were found to be statistically
insignificant and were dropped from the analysis. The final regression model had a good fit (r2¼ 0.732)
and all independent variables had statistical significance above the 95% level.
DATASETS USED AND INDICATORS ASSESSED

This study used three datasets of validated water loss audits from different areas of North America.
These datasets were selected because they are all composed of only validated water loss audits,
were readily available, and portray different cohorts in terms of climate, utility size, connection den-
sity, water consumption, pressure, and financial parameters. None of these datasets are fully
representative of conditions across North America but represent the best available data at the time
of this study. These datasets were assembled and subjected to further validation during the projects
described in Trachtman et al. (2019) and Trachtman & Wyatt (2019). Those reports provide extensive
discussion of technical parameters and performance indicators in each dataset. The principal
attributes of each dataset are summarized in Table 1.
a.silverchair.com/h2open/article-pdf/3/1/102/862906/h2oj0030102.pdf



Table 1 | Attributes of datasets used to assess technical rigor of water loss indicators

Attributes/Indicators Dataset WADI Plus California Georgia

Time Period of Water Loss Audits 2009–2016 CY16, FY16� 17 CY2016

Number of Utilities n¼ 66 n¼ 272 n¼ 155

Utility Size Range, Connections 1,000–600,000 1,900–740,000 1,500–260,000

Median Number of Connections 32,200 13,600 5,500

Median Connection Density, Connections/km 38.0 46.5 27.8

Median Average Operating Pressure, m 50.1 52.1 52.7

Median Billed Authorized Use, L/Connection/Day 1,160 1,710 804

Median Variable Production Cost (VPC), US$/m3 $0.11 $0.44 $0.11

Median Customer Retail Unit Cost (CRUC), US$/m3 $1.28 $1.06 $1.31

Median Ratio: CRUC/VPC 10 2.4 10

Median Total Water Loss, L/Connection/Day 194 134 214

Median Total Water Loss Value, US$/Conn/Year $21 $30 $21

Median Apparent Loss, L/Connection/Day 30 31 21

Median Apparent Loss Value, US$/Conn/Year $12 $12 $9

Median App Loss/(App LossþBilled Authorized Use) 2.4% 1.6% 2.6%

Median Real Loss, L/Connection/Day 155 98 183

Median Real Loss, L/Conn/Day/m of pressure 3.1 1.9 3.6

Median Real Loss, L/km/hr 250 188 192

Median Real Loss Value, US$/Connection/Year $9 $16 $10

Median Infrastructure Leakage Index 2.2 1.5 2.2

Median ILI * Pressure Management Index 3.2 2.3 3.2

Median NRW Volume/System Input Volume 18.8% 8.2% 23.3%

Median Real Loss Volume/System Input Volume 13.8% 5.8% 17.4%

Median NRW Value/Water System Operating Cost 5.7% 3.6% 6.9%

Median Real Loss Value/Water System Oper. Cost 2.0% 1.8% 2.8%
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Table 1 also provides a list of the 15 water loss indicators assessed, in bold and italic font. The indi-
cators were drawn from the AWWA Free Water Audit Software, Trachtman et al. (2019), Trachtman
& Wyatt (2019), others in use in Europe and other regions, in accordance with the IWA Best Practice
Manual: Indicators for Water Supply Services (Alegre et al. 2016).
Additional notes on the three datasets are provided below.

1. The WADI Plus dataset, which is an expansion of an earlier AWWA dataset known as WADI, con-
tains weighted averages of multiple annual water loss audits in 66 utilities across USA and Canada.
The dataset includes a broad variety of locations – from cool wet locations in the North East region
to hot dry locations in the Southwestern USA. While the range of utility sizes is wide, WADI Plus
contains a relatively higher number of larger Eastern cities, with older infrastructure – such as Hali-
fax, NS, Philadelphia, PA, Pittsburgh PA, Region of Peel, ON, Washington, DC, and Wilmington,
DE. Many sites in WADI Plus have 5 consecutive years of data, which is considered to result in
more accurate water loss audits.

2. The 2016 Georgia dataset is the most recent of five annual datasets of utilities across that State, so
all locations had several years of water loss audit experience. With the exception of the City of
Atlanta and utilities in suburbs around Atlanta, the dataset mostly includes small water supply sys-
tems with low connection density, low water consumption, and wider use of non-metallic piping
than the other datasets.
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3. The 2016 California dataset is a larger dataset (272 audits, filtered down from 365 validated water
loss audits). There is considerable variety in the dataset from the cool, wet northern part of the
State to the hot, dry, southern part. In addition, the dataset includes a mix of large utilities such
as Sacramento, San Diego, San Francisco and Los Angeles, as well as many smaller suburban
or rural Water Districts. Importantly, the dataset includes just one year of data, which was the
first year that utilities prepared validated water loss audits.
METHODOLOGY

Components of the methodology

The main components of the methodology are outlined in Figure 1, showing the sequence of analyses
that result in a ‘technical score’ for indicators for total water losses, apparent losses, and real losses.
The components are explained below.
Figure 1 | Components of the methodology.
Component 1. The first component is to prepare a multivariate regression model that predicts
annual volume of the total water losses, of apparent losses or real losses, based solely on relevant uti-
lity attributes or other factors that are mostly out of the direct control of the utility, such as the number
of connections, average operating pressure, unit variable production cost of water, etc. Variables
related to water loss control practices are not included. Table 2 lists the input and output variables
and regression model form used – the Cobb-Douglas model. That model was used for its simplicity,
which aligns well with the numerical results of water loss audits. Future studies could use a translog
model form if additional parameters are introduced. Also an error term could be added to the model
allowing error to be distinguished from inefficiency from other factors.
Component 2. The second component is to compare the annual observed total, apparent or real

losses of each utility to the predicted total, apparent or real losses for that utility. The observed
water loss in each utility is plotted versus the predicted water loss, as shown in Figure 2. If a given
utility has an observed water loss that is lower than the predicted value, then it is below the ‘average’
line and is a relatively ‘better’ performer within the dataset. On the other hand, a utility with a very
a.silverchair.com/h2open/article-pdf/3/1/102/862906/h2oj0030102.pdf



Table 2 | Mathematical form of the regression models

Dependent Variable AL¼Apparent Loss, Mm3/Year RL¼ Real Loss, Mm3/Year WL¼ Total Water Loss, Mm3/Year

Independent
Variables

Nc¼No. of Connections Nc¼No. of Connections Nc¼No. of Connections
BAC¼Billed Authorized

Consumption, Mm3/Year
BAC¼Billed Authorized Consumption,
Mm3/Year

Lm¼Length of Mains, km Lm¼Length of Mains, km
P¼Average Operating
Pressure, m

P¼Average Operating Pressure, m

WP¼Average Water Price,
$/m3

WP¼Average Water Price, $/m3

VPC¼Variable Water
Production Cost, $/m3

VPC¼Variable Water Production Cost,
$/m3

Model Form ln(AL)¼AþB*ln (Nc)þC*ln
(BAC)þD*ln (WP)

ln(RL)¼Eþ F*ln(Nc)þG*ln
(Lm)þH*ln(P)þ I*ln(VPC)

ln(WL)¼ JþK*ln (Nc)þ L*ln(Lm)þM*ln
(BAC)þN*ln(P)þ O*ln(VPC)þ
Q*ln(WP)

Figure 2 | Relative water loss efficiency.
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high observed volume of losses relative to the predicted volume will be far above the average line and
be a relatively poor performer.
It is possible to construct a (low) frontier line, which is parallel to the average line, from the

observed volumes of water losses of the best performer(s). A relative water loss efficiency index for
each utility can be found from the relative distance to the low frontier, which accurately reflects
the relative water loss performance. In this paper, relative water loss efficiency index is also called
a ‘Frontier Score’.
Component 3. The third component is to compare the value of the efficiency index (Frontier Score)

to the value of a candidate indicator for each utility, using a log-log plot. Figure 3 provides an example
assessment of one real loss indicator. The plot is examined for any bias, large scatter or other graphi-
cal signal of a weak relationship. From there, the analysis continues with a simple regression of the
Frontier Score against the indicator value, usually using a power function and the computation of
the regression fit, r2. If the regression fit is high and no large scatter or skew is present, then that indi-
cator can be considered technically rigorous, in that dataset. Figure 3 shows a strong relationship
between indicator value and the Frontier Score and high regression fit, r2¼ 0.845.
a.silverchair.com/h2open/article-pdf/3/1/102/862906/h2oj0030102.pdf



Figure 3 | Example regression of Frontier Score and unit real loss volume indicator.
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Component 4. The last component of the methodology is to determine an overall score for techni-
cal rigor of the indicator. The three components above will have been carried out separately for each
indicator and for each dataset. Two additional criteria can be reviewed, especially when the graphical
view and the regression fit (r2) lead to uncertainty on the technical rigor. Those additional quantitative
criteria include the following:

1. The correlation coefficient between the Frontier Score and the indicator. A high correlation coeffi-
cient indicates a close relationship between the variables.

2. The standard error of the Frontier Score at the mean indicator value. A low standard error, in
simple terms, indicates a low ‘spread’ of data points on the graph.

The use of these additional factors provides a more thorough and quantitative examination of the
relationship between the Frontier Score and the indicator. Note that the standard error is influenced
by the dataset sample size, so comparison of standard errors across datasets is inaccurate, but com-
parison between indicators for a given dataset is acceptable. An example of this process with two
indicators in the California dataset is shown in Figure 4. The unit volume indicator has higher corre-
lation coefficient and a lower standard error than the unit value indicator. In addition, the regression
fit is considerably higher for the case of the unit volume indicator.
In many cases, reviewing the correlation coefficient and standard error will not be needed,

especially if the regression fit is very strong. Also, the correlation coefficient and standard error reflect
characteristics which are mostly ‘captured’ in the regression fit. Therefore, Table 3 was prepared as
simplified scoring of Technical Rigor, based solely on the regression fit. This simplified scoring facili-
tates a quick ‘grasp’ of the rigor of an indicator and easy comparison between indicators within a
dataset, and also across datasets for a given indicator.
RESULTS AND DISCUSSION

The analysis resulted in technical rigor scores for each of the 15 water loss indicators in each of the
three datasets. This section of the paper provides an example graph of the observed and predicted
volumes of total annual water losses, apparent losses and real losses volumes, one for each dataset.
Tables are provided here on the regression fits (r2) and technical rigor scores for all indicators in
all datasets. The Appendix provides analysis of variance (ANOVA) tables for each FA regression,
including coefficients, standard errors and statistical significance of input parameters.
a.silverchair.com/h2open/article-pdf/3/1/102/862906/h2oj0030102.pdf



Table 3 | Rating scale for technical rigor

Range of r2 Technical Rigor

0.850–1.000 5

0.700–0.849 4

0.550–0.699 3

0.400–0.549 2

,0.400 1

Figure 4 | Relationship of total water loss volume and value indicators to Frontier Scores.
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Frontier Analysis of total water losses in California

Figure 5 provides a graph of observed and predicted total annual water losses in California. The FA
has a very good regression fit (r2) of 0.843, a standard error of 0.431 and an F Statistic close to 240.
The spread of observations is quite even, but there is some skew for very large utilities in the State.

The span from low frontier to high frontier is moderate – from about 0.38 to 3.9 times the average.
Table 4 provides a summary of results for total unit water losses across the three datasets. The

volume-based indicator has a fairly high technical rigor, while the technical rigor of the value-
based indicator is lower and varies considerably across datasets.
a.silverchair.com/h2open/article-pdf/3/1/102/862906/h2oj0030102.pdf



Figure 5 | Frontier Analysis of total water losses in California, 2016.

Table 4 | Technical rigor of total water loss indicators across datasets

Dataset

Indicator WADI Plus n¼ 66 California n¼ 272 Georgia n¼ 155 Range: r2 & TR

Total Unit Water Loss Volume Regression Fit r2¼ 0.845 Regression Fit r2¼ 0.696 Regression Fit r2¼ 0.659 r2¼ 0.66–0.84
Technical Rigor¼ 4 Technical Rigor¼ 3 Technical Rigor¼ 3 TR¼ 3–4

Unit Total Water Loss Value Regression Fit r2¼ 0.499 Regression Fit r2¼ 0.232 Regression Fit r2¼ 0.192 r2¼ 0.19–0.50
Technical Rigor¼ 2 Technical Rigor¼ 1 Technical Rigor¼ 1 TR¼ 1–2
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Frontier Analysis of apparent losses in Georgia

Figure 6 presents the plot of observed and predicted apparent losses in Georgia – which has a good
regression fit (r2¼ 0.733), a standard error of 0.72 and an F Statistic of 138.
The spread of observations is fairly even, but the span from low frontier to high frontier is quite wide

– from about 0.2 to 8.7 times the average. The relatively wide spread of Frontier Scores suggests more
variability in performance, possible influence of factors not in the regression model, or more error in
apparent loss estimation in Georgia. Atlanta could be thought of as an outlier, but Atlanta is well
known to be facing many water loss challenges.
Table 5 presents a summary of results for apparent loss indicators for the three datasets. Both the

volume-based and value-based indicators had noticeable variation across the datasets, presumably
due to additional factors not included in the regression model or variability in error. However, the
regression fit and technical rigor of apparent loss/(billed authorized consumptionþ apparent loss)
a.silverchair.com/h2open/article-pdf/3/1/102/862906/h2oj0030102.pdf



Table 5 | Technical rigor of apparent loss indicators across datasets

Dataset

Indicator WADI Plus n¼ 66 California n¼ 272 Georgia n¼ 155 Range: r2 & TR

Volume: Liters/
Connection/Day

Regression Fit r2¼ 0.790
Technical Rigor¼ 4

Regression Fit r2¼ 0.469
Technical Rigor¼ 2

Regression Fit r2¼ 0.740
Technical Rigor¼ 4

r2¼ 0.47–0.79
TR¼ 2–4

Value: $/Connection/Year Regression Fit r2¼ 0.701
Technical Rigor¼ 4

Regression Fit r2¼ 0.345
Technical Rigor¼ 1

Regression Fit r2¼ 0.616
Technical Rigor¼ 3

r2¼ 0.34–0.70
TR¼ 1–4

Apparent Loss/(Billed
Authorized UseþApparent
Loss)

Regression Fit r2¼ 0.922
Technical Rigor¼ 5

Regression Fit r2¼ 0.948
Technical Rigor¼ 5

Regression Fit r2¼ 0.982
Technical Rigor¼ 5

r2¼ 0.92–0.99
TR¼ 5–5

Figure 6 | Frontier Analysis of apparent losses in Georgia, 2016.
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is consistently very high. In fact, this indicator has the highest rigor of all those assessed in this study.
Recently, IWA Guidance Documents on Apparent Loss favored this indicator (Lambert et al. 2016).
Frontier Analysis of real losses using the WADI Plus dataset

Figure 7 presents the plot of observed and predicted real losses using the WADI Plus dataset – which
had a very good regression fit r2 of 0.897, a standard error of 0.628 and an F Statistic of 133.
The spread of observations is fairly even, with some skew for the larger utilities in older cities. The

span from the low frontier to the high frontier is relatively narrow from about 0.23 to 3.4
Table 6 presents the results for real loss indicators in each dataset. The technical rigor of many real

loss volume indicators is quite high and also reasonably consistent across dataset. But there is one
exception – the real loss volume per kilometer per hour which varies greatly between the datasets.
a.silverchair.com/h2open/article-pdf/3/1/102/862906/h2oj0030102.pdf



Figure 7 | Frontier Analysis of real losses using the WADI Plus dataset.

Table 6 | Technical rigor of real loss indicators across datasets

Dataset

Indicator WADI Plus n¼ 66 California n¼ 272 Georgia n¼ 155 Range: r2 & TR

Volume: Liters/
Connection/Day

Regression Fit r2¼ 0.845
Technical Rigor¼ 4

Regression Fit r2¼ 0.654
Technical Rigor¼ 3

Regression Fit r2¼ 0.766
Technical Rigor¼ 4

r2¼ 0.65–0.84
TR¼ 3–4

Volume: Liters/Km/Hr Regression Fit, r2¼ 0.501
Technical Rigor¼ 2

Regression Fit r2¼ 0.928
Technical Rigor¼ 5

Regression Fit r2¼ 0.810
Technical Rigor¼ 4

r2¼ 0.50–0.93
TR¼ 2–5

Volume: Liters/
Connection/Day/m AOP

Regression Fit r2¼ 0.889
Technical Rigor¼ 5

Regression Fit r2¼ 0.582
Technical Rigor¼ 3

Regression Fit r2¼ 0.768
Technical Rigor¼ 4

r2¼ 0.58–0.89
TR¼ 3–5

Infrastructure Leakage Index
(ILI)

Regression Fit r2¼ 0.722
Technical Rigor¼ 4

Regression Fit r2¼ 0.745
Technical Rigor¼ 4

Regression Fit r2¼ 0.846
Technical Rigor¼ 4

r2¼ 0.72–0.85
TR¼ 4–4

ILI * Pressure Management
Index (PMI)

Regression Fit r2¼ 0.702
Technical Rigor¼ 4

Regression Fit r2¼ 0.862
Technical Rigor¼ 5

Regression Fit r2¼ 0.875
Technical Rigor¼ 5

r2¼ 0.70–0.86
TR¼ 4–5

Value: $/Connection/Year Regression Fit, r2¼ 0.492
Technical Rigor¼ 2

Regression Fit r2¼ 0.161
Technical Rigor¼ 1

Regression Fit r2¼ 0.378
Technical Rigor¼ 1

r2¼ 0.16–0.49
TR¼ 1–2
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The reasons for this variation are not fully clear but anecdotal information suggests that the materials
used for mains and for connections are different in the different datasets, changing the principal
locations of leakage, which in turn affects the variability of the real loss indicator values.
The technical rigor of the real loss value indicator is low because of its mathematical form. It is

derived from the product of the real loss unit volume indicator multiplied by the unit variable pro-
duction cost (VPC) of water. However, the VPC is often out of the control of the utility, given
regulations/restrictions on water sources, raw water quality for surface water systems, the pumping
a.silverchair.com/h2open/article-pdf/3/1/102/862906/h2oj0030102.pdf
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head for groundwater systems, and other factors. Therefore, as a water loss volumetric performance
indicator, a high value of the real loss unit value does not necessarily mean a high real loss volume.
The real loss unit value can be very useful in assessing the cost benefit of different real loss interven-
tions, but it is not an accurate indicator of utility real loss performance.
Percentage-based indicators

Table 7 presents the regression fits and technical rigor scores for four percentage-based indicators,
including the commonly used %NRW volume indicator. The regression fits are weak and the techni-
cal rigor scores are considerably lower than other indicators. This finding reinforces the concerns
regarding the well-known flaws of percentage-based NRW indicators.
Table 7 | Technical rigor of percentage-based NRW indicators across datasets

Dataset

Indicator WADI Plus California Georgia Range: r2 & TR

Volume of NRW/System Input Volume r2¼ 0.518
TR¼ 2

r2¼ 0.341
TR¼ 1

r2¼ 0.527
TR¼ 2

r2¼ 0.34–0.53
TR¼ 1–2

Value of NRW/Water System Operating Cost r2¼ 0.212
TR¼ 1

r2¼ 0.120
TR¼ 1

r2¼ 0.213
TR¼ 1

r2¼ 0.12–0.21
TR¼ 1–1

Real Loss Volume/System Input Volume r2¼ 0.616
TR¼ 3

r2¼ 0.418
TR¼ 2

r2¼ 0.521
TR¼ 2

r2¼ 0.42–0.62
TR¼ 2–3

Real Loss Value/Water System Operating Cost r2¼ 0.314
TR¼ 1

r2¼ 0.154
TR¼ 1

r2¼ 0.042
TR¼ 1

r2¼ 0.04–0.31
TR¼ 1–1
CONCLUSIONS

Based on the data available and analysed in this study, the following conclusions can be reached:

• The combination of Frontier Analysis and regression analysis of Frontier Scores with candidate indi-
cators is considered to be a very suitable method of assessing the technical rigor of indicators.

• This method is, to the author’s knowledge the first detailed quantitative assessment of water loss and
water loss component indicators.

• The commonly-used %NRW indicator has very low technical rigor, confirming the long-held cri-
tique of this indicator – due to the influence that consumption has on this indicator. Other
percentage-based indicators also have low technical rigor. Given that there are alternatives with
high technical rigor, ongoing use of these percentage-based indicators is considered to be not
useful and misleading. The one exception is real loss volume/system input volume which has mod-
erate technical rigor in two of the datasets studied. This indicator could be useful in water resource
planning, but more investigation is suggested.

• It is also noteworthy that of the scores of journal articles describing applications of Frontier Analysis
and Data Envelopment Analysis only two were found to use the more rigorous water loss indicators
– such as unit volumes of losses.

• The unit real loss volume and unit apparent loss volume, per connection per day, appear to be the
key performance indicators, given their high technical rigor, simplicity, broad understandability,
ease of calculation, and usefulness in planning interventions for water loss reduction and control.
This conclusion is consistent with indicator recommendations by the IWA.

• The unit real loss value and unit apparent loss value indicators have low technical rigor for repre-
senting utility water loss performance but are very useful for financial evaluation of water loss
a.silverchair.com/h2open/article-pdf/3/1/102/862906/h2oj0030102.pdf
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control activities and investments. These indicators could be more rigorous if data were separated
into cohorts based on the type of water resource and scale.

• Several ratio-based indicators were found to have high technical rigor and considered useful,
especially for utilities. Those include the Infrastructure Leakage Index (ILI), the Pressure Manage-
ment Index (PMI), the product of those ratios (ILI*PMI), and the ratio of Apparent Loss/(Billed
Authorized ConsumptionþApparent Loss).

• For some of the indicators, technical rigor varies considerably from one dataset to another. On the
other hand, some indicators have high (or low) technical rigor in all three datasets. Such variation is
to be expected, probably due to variations in data quality and technical parameters. More assess-
ment, and the use of stochastic frontier analysis should help clarify these variations.

• Follow-up research to apply this method with other water loss audit datasets in different locations or
regions of North America will help to refine results, but also determine if locational factors favor
one indicator or another.

• The use of stochastic frontier analysis (with the introduction of an error term in the model formu-
lation) would likely provide useful additional information on the Frontier Score values, including
the magnitude of error, influence of other variables not included in the regression formulation,
and perhaps provide information of the effectiveness of different types and extents of water loss con-
trol practices. However, a stochastic approach will require more sophisticated analysis software
which may inhibit its use by regulators in North America.

• The use of these indicators and follow-up analyses will be enhanced by an emphasis on regular
ongoing water loss audits, and on continual improvement of the accuracy of the data inputs, in sup-
port of improving water loss audit accuracy.

• The collection of additional utility parameters, along with the water loss audit, will be helpful for
ongoing research, especially for more complex regression model forms, and for controlling for var-
ious environmental or institutional factors.

The results of the water loss performance indicator assessments are summarized in Table 8, which
provides information on the range of technical rigor scores, suitable purposes/uses and principal
Table 8 | Conclusions of the water loss performance indicator assessment

Type
Indicators: NRW, Water Losses, Apparent
Loss and Real Loss

Range of
Technical Rigor

Suitable Purposes/Uses

Main
Users**Assessment Benchmarking

Target
Setting Planning Tracking

Volume NRW Volume/System Input Volume 1–2
Unit Total Water Losses 3–4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ U, R, C
Unit Apparent Losses 2–4 ✓ ✓ ✓ ✓ ✓ U, R
Apparent Losses/(Apparent Lossesþ

Billed Authorized Consumption)
5–5 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ U, R

Unit Real Losses/Connection 3–4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ U, R
Unit Real Losses/Pipe Length 2–5 ✓ ✓ ✓ ✓ ✓ U, R
Unit Real Losses/Connection/

Pressure
4–5 ✓ ✓ ✓ ✓ ✓ ✓ U

Infrastructure Leakage Index (ILI) 4–4 ✓ ✓ ✓ ✓ ✓ ✓ U
ILI * Pressure Management Index 4–5 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ U
Real Loss/System Input 2–3 ✓ U, R

Value NRW/Water System Operating Cost 1–1
Unit Total Water Losses 1–2
Unit Apparent Losses 1–4 ✓ ✓ ✓ U, R
Unit Real Losses 1–2
Real Loss/Water System Operating

Cost
1–1

**Key for Main Users: U¼ Utilities, R¼ Regulators, C¼ Customers.
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users of indicators. For guidance on the reliable use of indictors, a preliminary value of a threshold of
technical rigor of 3 or larger was assumed. (This threshold corresponds to a regression fit between the
indicator and the Frontier Score greater than 0.55). Those cells with two check marks are deemed
technically rigorous, because the Technical Rigor Score is 3 of higher in all three datasets.
The absence of check marks indicates low, technical rigor. But some of the ‘cells’ in Table 8 have a

single check mark in parentheses, which indicates that less than three of the datasets exceeded the
threshold of a technical rigor of 3 or more. More analysis and interpretation of the results from
these datasets is warranted, as well as application of this method to other datasets to gain a refined
sense of the appropriate threshold.
These indicators form a ‘suite’ of tools which, when considered together, can provide an improved

benchmarking and understanding of the magnitude and characteristics of the water losses at a utility
or group of utilities. They also provide a strong, quantitative basis for identifying priority water loss
challenges, setting targets, planning and implementing programs, monitoring results, and refining
strategies and tactics to achieve appropriate reduction and control of water losses.
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