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6.1  INTRODUCTION
A value chain that addresses sanitation biomass recovery and conversion (SBRC) 
could offer resources that enhance the emerging low-carbon circular bioeconomy 
in developing and developed countries and in turn reduce the reliance on virgin raw 
materials as a result of being biomass drawn from secondary materials (Panoutsou 
et al., 2020). This could also mitigate climate change and contribute to local economic 
growth such as creating skilled employment opportunities (BFG, 2012; Panoutsou et al., 
2020). It could focus on recovery and reuse of resources from excreta and wastewater 
fractions that do not interfere with natural ecosystems or human food chains, but rather 
on recovered resources such as soil conditioners, compost and effluent for irrigations 
which are well established end-products. Wastewater treatment for resource recovery 
is a rational solution to avoid problems derived from droughts and water shortages, 
especially for countries with water restrictions (Jodar-Abellan et al., 2019; Zarei, 2020a), 
while wastewater management including safe reuse of water and the recovery of vital 
resources, could open remarkable opportunities for commercial markets. Recently, 
nanomaterials gained significant attention for widespread applications in biosensing, 

Chapter 6

Sanitation biomass recovery 
and conversion

Chapter objectives
The aim of this chapter is to present the sanitation biomass recovery and 
conversion value chain (SBRCVC) activities that show how enterprises offer 
resources that enhance the emerging low-carbon circular bioeconomy and in turn 
reduce reliance on virgin raw materials. Furthermore, it intends to explore better 
understanding of enterprises and businesses that valorise secondary organic 
resource-materials from excreta, wastewater, sewage and faecal sludge with 
other blended organic-waste-derived biomass and then those ventures that could 
convert these bioresources into different valuable products, ranging from high-
value amino acids and proteins, short-chain fatty acids, enzymes, biopesticides, 
bioplastics, bioflocculants, biofertilizer and biosurfactants as well as those that 
use them to produce other kinds of commodities.
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126 Integrated Functional Sanitation Value Chain

water splitting, energy recovery, environmental remediation, and wastewater treatment 
(Kadam et al., 2020; Wang et al., 2020; Zarei, 2020a, 2020b, 2020c; Zarei & Aalaie, 2019). 
In particular, treated wastewater can be reused for multiple purposes in the industrial 
sector and for agricultural purposes, irrigation, groundwater recharge for effluent quality 
improvement; it can also be used for domestic purposes – fire protection, car wash, 
and toilet flushing (Zarei, 2020a; see Figure 6.1). Other possibilities that are starting to 
be implemented include sewage sludge and faecal sludge biomass composting used to 
produce animal feed from black soldier fly larvae or fodder crops, incorporating building 
materials such as bricks, tiles, cements, concretes, mortar, and so on, and also energy in 
the form of fuel, electricity and heat (Andriessen et al., 2019; Zarei, 2020a). In addition 
to these recovered end-products, all of these could also support solutions for coverage 
and access problems of safely managed sanitation while providing appropriate incentives 
for faecal sludge management (Diener et al., 2014; Wielemaker et al., 2018). Revenues 
from resource recovery and reuse after conversion could partially offset operation costs, 
incentivize proper operation and maintenance, and stimulate regular emptying and 
delivery of faecal sludge, particularly in developing countries (Andriessen et al., 2019). 
Studies have confirmed the emergence of viable business models for value chains around 
sanitation biomass resource recovery and reuse that in turn help ensure sustainable 
provision of safely managed sanitation (Diener et al., 2014; Murray & Ray, 2010).

This could be viewed as the sanitation biomass recovery and conversion value chain 
(SBRCVC) and it would deal with enterprises and businesses that valorise secondary 
organic resource-materials from excreta, wastewater, sewage sludge, and faecal sludge 
with other blended organic-waste-derived biomass as well as those that could convert 
these bioresources into different valuable products, ranging from high-value amino acids 
and proteins, short-chain fatty acids, enzymes, biopesticides, bioplastics, bioflocculants, 
biofertilizer and biosurfactants (Zhang et  al., 2018). Value chains encompass the full 
range of activities required to bring a product or service from conception, through 

Figure 6.1  Wastewater flows and sources. (Source: WWAP (UN-Water), (2017). CC-BY-SA 3.0 IGO, 
license © 2017 by the authors)
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127Sanitation biomass recovery and conversion

different phases of production that involve a combination of physical transformation 
and input from various producers and services to delivery, to the final consumer and 
final disposal after use (Maaß & Grundmann, 2016). Unlike conventional value chains 
the SBRCVC is not necessarily made up of sequential and linear activities; rather it is 
viewed as manifold connections in which value is co-created by a combination of players 
and enterprises (Maaß & Grundmann, 2016; Peppard & Rylander, 2006) comprising 
environment, social, economic and governance actors interacting through institutions, 
technology and other relevant stakeholders to:

•	 Co-produce product and service offering;
•	 Exchange product and service offering, and
•	 Co-create value along the biomass recovery transformation chain (Lusch et al., 

2010; Maaß & Grundmann, 2016).

The economic value created from value chains is commonly measured by the added 
value, that is a success indicator that describes the performance of a firm, business or the 
increase in value resulting from production, processing, marketing and other economic 
activities (Haller, 1997; Maaß & Grundmann, 2016). It can also be understood as the 
difference between the value of goods and/or services delivered from one business to 
another, and the value of all inputs received by this business from other businesses and/
or enterprises for producing that particular good or service. It is a set of interlinked 
activities that deliver products/services by adding value to bulk materials (feedstock 
through the process of conversion to high-value products). In such a bio-based sanitation-
waste value chain, the feedstocks tend to be biomass drawn from by-products of existing 
primary production or secondary origins like sanitation-derived biomass (Lokesh et al., 
2018; see Figure 6.2). Bioresources value chains that valorise secondary resources 
are designed to turn available organic materials into different valuable products that 
range from high-value chemicals, fertilizers, and biochar to secondary-used by-products 
and renewable energy; and are capable of transforming waste/secondary feedstock 

Figure 6.2  A generalised map of a bio-based value chain. (Source: Lokesh et al. (2018). Under CCA 4.0 
license, © 2018 the authors)
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128 Integrated Functional Sanitation Value Chain

into arrays of high-value products called integrated biorefineries (Lokesh et al., 2018; 
Pan et al., 2015). Integrated biorefineries contain a pre-treatment plant that prepares 
the feedstock for biomass conversion/transformation within the value chain before 
packaging and distribution (Greene, 2014; Lokesh et al., 2018) to the final consumer 
or end-user.

In addition, biomass recovery value chains contribute to materials recycling, climate 
mitigation, and greenhouse-gas (GHG) emission reduction as well as the development 
and implementation of several outstanding technologies like combustion, gasification 
and anaerobic digestion hinged upon sustainable strategies that could overcome 
some obvious challenges. Pan et  al. (2015), for instance, proposed such related 
strategies with options that cover technology, finance, institutions, public concerns 
and regulations (Zarei, 2020a). However, in Malaysia Lam et al. (2013) developed a 
two-stage biomass model waste-to-energy (WTE) process with the first stage being 
a micro-stage waste-biomass optimization and allocation integrated waste-biomass 
processing hub; and the second stage being a macro-stage designed to handle the 
synthesis and optimization for the WTE (Zarei, 2020a). These strategies provided 
both the analysis of economic value and sustainable solutions for the utilization of 
waste-biomass for resource recovery.

Normally, the value chain theory recognizes the stages and activities of the value 
chain’s competitive advantages or disadvantages, and where cost advantage strategy 
optimization should focus mostly on activities that contribute the most to cost reduction 
(Darmawan et al., 2014). Furthermore, types and forms of sanitation biomass resource 
recovery should always meet local conditions and user acceptance, and, whenever 
possible, should be decided early in the planning process, so that appropriate treatment 
objectives can be set to ensure public health protection of the end-users (Reymond, 
2014). Also, a market-driven assessment can help to inform which end-product is most 
marketable in a specific location (Andriessen et al., 2017, 2019). For instance, research 
indicates that there is a high demand for solid fuels in urban areas of Sub-Saharan Africa, 
particularly from manufacturing industries like the brick and cement industries (Diener 
et al., 2014). Also, wastewater sludge is used as fuel in co-combustion with coal or other 
solid fuels in industrial setups, both in carbonized and dried forms (Fytili & Zabaniotou, 
2008; Werther & Ogada, 1999).

In fact, there are nine ways for the recovery of energy from sewage/faecal sludge 
(Rulkens, 2008):

•	 anaerobic digestion of sewage/faecal sludge;
•	 production of biofuels from sewage/faecal sludge;
•	 direct production of electricity from sewage/faecal sludge in microbial fuel cells;
•	 incineration of sewage/faecal sludge with energy recovery;
•	 co-incineration of sewage/faecal sludge in coal-fired power plants;
•	 gasification and pyrolysis of sewage/faecal sludge;
•	 use of sludge as energy and raw material source in the production of portland 

cement and building materials;
•	 supercritical wet oxidation of sewage/faecal sludge; and
•	 hydrothermal treatment of sewage/faecal sludge.

The SBRCVC value chain comprises all stages and activities that input a resource 
flow from sanitation systems (sewered and non-sewered sanitation) such as urine, faeces, 
excreta, anal cleansing materials (dry and water), flushwater, brown water, black water, 
greywater, wastewater, sewage, faecal sludge, and so on, (McConville et  al., 2020) to 
recover and reuse products. It can be analysed in such a way that all important connections 
are balanced in a circular manner to achieve resource efficiency and sustainability from 
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129Sanitation biomass recovery and conversion

the very beginning (Koottatep et  al., 2019; Panoutsou et  al., 2020). The SBRCVC is 
the sum of the remuneration received from all value-added activities of all stakeholders 
participating in the primary treatment of excreta and wastewater, pre-treatment 
of recovered biomass from sewered and non-sewered sanitation systems, biomass 
conversion and transportation, and biomass products packaging, as well as the biomass 
end-use market (Haller, 1997; Maaß and Grundmann, 2016). In other words, SBRCVC 
takes a look at the remunerations of participating businesses and/or enterprises (public 
and/or private) involved in the treatment, recovery and reuse of excreta, wastewater, 
sewage sludge and faecal sludge, crop production, bioenergy generation, and so on. The 
added value also reveals some social distributional implications of the value chain. The 
parameters differ from the conventional profit calculation because the remunerations 
paid to employees, creditors, and the State are considered as part of the added-value and 
not as value-reducing components (Möller, 2006).

6.2  THE SANITATION BIOMASS RECOVERY AND CONVERSION 
VALUE CHAIN AND CIRCULAR BIOECONOMY
Escalating environmental and economic pressure to use resources responsibly and 
add value to the used material/products in the commercial sphere has helped the 
development of technology routes and material circularity in the sanitation and waste 
biomass sector (Lokesh et al., 2018). The aim of such systems thinking is to ‘close the 
loop’ by becoming resource efficient through developing and establishing a sanitation 
symbiosis to reduce the pressure on virgin biomass (Lokesh et al., 2018). The SBRCVC 
aligns with the implementation of a circular bioeconomy and water–food–energy 
nexus approaches, that is, a coordinated integration approach that cuts across natural-
resources-related sectors and sanitation, which is expedient for solving water, energy 
and food supply security. Conventional sanitation systems often dispose large loads of 
nutrients into water bodies, and this causes eutrophication (Mallory et al., 2020; Wang 
et  al., 2017); global wastewater has enough nutrients to replace 50 million tonnes of 
fertilizer (CGIAR, 2013; Mallory et al., 2020), which represents a significant proportion 
of the estimated 262 million tonnes supplied per year (FAO, 2019; Mallory et al., 2020). 
The core argument of the nexus approach and circular bioeconomy for sanitation is 
that the multiplicity of feedbacks and interdependencies resulting from linkages among 
subsystems, such as sanitation, water, food and energy, jointly affect the sustainability 
of the broader social-ecological systems (Ganter, 2011; Hellegers et  al., 2008; Hussey 
& Pittock, 2012; Villamayor-Tomas et  al., 2015; Waughray, 2011). The integration of 
the circular bioeconomy, the nexus and sanitation value chain expands the base of 
sanitation natural resources which is capable of enhancing water, food and energy 
security on a local and global scale (Maaß & Grundmann, 2016). This extends the 
water–food–energy nexus approach to take into account not only the linkages between 
single resources, but also the connections between whole biomass recovery value chains 
that use these resources. The benefit of the economic impacts of reducing virgin natural-
resource utilization and turning sanitation input–inflow materials to generate desirable 
out-products complies with the core principles of a circular bioeconomy. The added 
advantage is that these complex linkages and integration resulting from the adoption of 
the circular economy for sanitation can further enhance the recovery of resources like 
faecal sludge, wastewater and sewage sludge through products like animal-feed, energy, 
biogas, compost and recycled water (Ddiba et al., 2020; Diener et al., 2014; Mallory et al., 
2020).

The combination of sanitation biomass recovery and a circular bioeconomy has 
the potential to directly contribute to 12 out of the 17 UN Sustainable Development 
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130 Integrated Functional Sanitation Value Chain

Goals (SDGs) (Figure 6.3). These make a direct contribution to access to water and 
sanitation for all (SDG 6), sustainable consumption and production (SDG 12), and 
reducing pressure on the environment, air, water, and land (SDGs 13, 14 and 15) (Blair 
et al., 2021; Lokesh et al., 2018). There is also a contribution to SDGs related to food 
security and sustainable agriculture (SDG 2), decent work and economic growth (SDG 
8), resilient infrastructure and sustainable industry (SDG 9), climate action (SDG 13), 
terrestrial ecosystems (SDG 15) and SDG 7 (affordable and clean energy) (Blair et al., 
2021). In addition, further contributions can be seen in utilizing the rural knowledge 
pool and alleviating poverty (SDG 1), good health and well-being (SDG 3), reducing 
inequalities (SDG 10), guarding the local ecosystem services that encourage sustainable 
cities and communities (SDG 11), creating jobs and socio-economic opportunities (SDG 
8), forging skills among communities through quality education (SDG 4), and working in 
partnership with rural communities and local biobased biomass recovery infrastructure 
(SDG 17) (Blair et al., 2021; Lokesh et al., 2018). The use of biomass recovery requires 
devising smart strategies and value-chain pathways to lock the chains of GHG emissions, 
either via carbon capture or soil incorporation of high-quality biochar (Blair et al., 2021; 
Lokesh et al., 2018).

The circular bioeconomy is, therefore, the intersection of the bioeconomy and the 
circular eco-economy which is the regenerative system for resource input, waste emission 
and energy leakage formed by closing material and energy loops (Geissdoerfer et  al., 
2017; Koottatep et al., 2019; Morone & Imbert, 2020). Thus, the sustainable bioeconomy 
represents the renewable segment of the circular economy (European Commission, 
2018) while the circular bioeconomy focuses on the sustainable, resource-efficient 
valorization of biomass in integrated multi-output production chains while also making 
use of residues and wastes and optimizing the value of biomass over time via cascading 
(Feleke et al., 2021). The key elements of the circular bioeconomy (Feleke et al., 2021; 
Stegmann et al., 2020) include:

•	 sustainable biomass sourcing;
•	 circular and durable product design;

Figure 6.3  Potential for circular biobased value chain to contribute to achieving UN’s SDGs and the 
potential of value chain mapping and analysis in quantifying these goals. (Source: Lokesh et al. (2018). 
Under CCA 4.0 license, © 2018 the authors)
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131Sanitation biomass recovery and conversion

•	 use of residues and waste;
•	 integrated, multi-output production chains;
•	 bioenergy and biofuels;
•	 biobased products, food, and feed;
•	 prolong and shared use;
•	 energy recovery and composting; and
•	 recycling and cascading

The circular economy (CE) is an economic system that is based on business models 
that replace the ‘end-of-life’ concept with reducing, reusing, recycling and recovering 
materials in production/distribution and consumption processes to accomplish 
sustainable development (Ddiba et  al., 2020). The circular economy aims to promote 
the maximum use of resources and reduce waste by closing economic and ecological 
loops of resource flows (Haas et al., 2015) and eliminates waste by design, keeping the 
added value of a product for as long as possible (Sariatli, 2017). Waste is viewed as a 
resource in a production process, which suggest less extraction of fresh materials and 
energy consumption (Feleke et al., 2021). On the other hand, the bioeconomy involves 
production of renewable biological resources and converting these resources and waste 
streams into value-added products, such as food, feed, biobased products, and bioenergy 
(European Commission, 2012a). An important feature of the bioeconomy is extending 
biomass production and processing beyond food, feed, and fibre to include a range of 
value-added products with potential applications in many sectors, for example, the food, 
health and energy sectors (East African Science & Technology Commission, 2019). 
Therefore, implementing circularity within the sanitation system (sewered and non-
sewered) forms a biological materials cycle involving recovering water, nutrients, energy 
and other materials which are typically managed within different resource management 
sectors (Ellen MacArthur Foundation, 2017).

An analysis of 56 of the world’s largest cities found that closing the nutrient loops in 
large urban cities is most feasible in Africa, Asia and Europe due to cropland density 
local to these cities (Moya et  al., 2019; Trimmer & Guest, 2018). And so a circular 
bioeconomy within the context of a sanitation biomass recovery value chain could: 
create an opportunity for incentivizing and stimulating sustainable sanitation by 
providing additional income streams and reducing the sanitation service cost to the 
user (Moya et al., 2019); contribute to keeping the added value in products for as long 
as possible (Maaß & Grundmann, 2016; Smol et  al., 2015); and to ensuring higher 
regional and domestic competitiveness by increasing the effectiveness of resource 
allocation, resource utilization and productivity (Maaß & Grundmann, 2016; Su 
et al., 2013). Other potential benefits of circular approaches to a sanitation biomass 
recovery marketplace include mitigating greenhouse gas emission, securing water, 
food and energy resources, and providing employment opportunities in growing cities 
(Andersson et al., 2016).

However, the main determinants of sanitation biomass recovery and conversion 
products and services in a circular bioeconomy (CBE) are volume of waste collected, 
integration of faecal sludge (FS) and sewage sludge (SS) with other waste streams, 
enabling policies and subsidies, and marketing. Also, a number of technical, social 
and political transformations would need to take place to make a CBE conducive for 
sanitation businesses that could drive the sanitation biomass recovery value chain 
(Mallory et al., 2020). Some studies have revealed that, technically, businesses often 
struggle to collect sufficient waste to make their model of reuse viable, and large 
increases in financial viability can be achieved by increased collection (Ddiba, 2016). 
Furthermore, literature looking at the circular bioeconomy for sanitation biomass 
recovery mostly focuses solely on sewage or faecal sludge, but business models are 

Downloaded from http://iwa.silverchair.com/ebooks/book/chapter-pdf/1084664/9781789061840_0125.pdf
by guest
on 23 April 2024



132 Integrated Functional Sanitation Value Chain

often driven by the integration of organic solid waste and other biomass (Moya et al., 
2019; Otoo & Drechsel, 2018; Remington et  al., 2018; World Bank, 2019). On this 
basis the Toilet Board Coalition (TBC) argues that FS/SS should be seen as part of 
a biological waste stream encompassing all biodegradable or organic waste to really 
enable a CBE for sanitation biomass recovery (TBC, 2017). Thus, when considering 
the circular bioeconomy for a sanitation biomass recovery value chain, it is essential 
to assess the contribution of other sources of biomass to the development of intended 
products and the market for the potential products or they will not provide the 
additional income stream that is desired (Dumontet et al., 1999). This is because in 
terms of social transformation, marketing and awareness of products also have a large 
influence in the ability of enterprises and businesses in the value chain to recover 
economic benefits from the CBE (Mallory et al., 2020).

6.3  SANITATION BIOMASS RECOVERY AND CONVERSION VALUE 
CHAIN MAPPING
Value chain mapping describes stages of value creation by enterprises and other 
organizations as part of the process of designing and delivering goods and services 
for their end-users (European Commission, 2012b; Lokesh et  al., 2018). Value chain 
maps are a valuable, flexible and convenient tool to develop and analyse the scope and 
performance potential of a biobased business model by breaking down the various 
process dynamics into logistics, sectors of application and embedded stakeholders. The 
strengths, weakness, costs and competition from other value chains in the production 
of specific commodities can be visualized via a value chain map (Lokesh et al., 2018). In 
essence, value chain mapping provides a generalized yet visual schematic of the dynamics 
including the resource flow and actors integrated within the SBRVC that are actively 
playing crucial roles in the delivery of relevant sanitation-derived products (SDPs) to the 
end-user markets. They involve a network of technologies and infrastructures to convert 
low-value biomass raw materials to high-value products; activities that safely recycle 
excreta and organic waste while minimizing the use of non-renewable resources such 
as water and chemicals. Safely recycling means that waste flows are managed to ensure 
that physical, microbial and chemical risks are minimized so that recycled products do 
not pose any significant health threat or environmental impact when correctly used 
(McConville et al., 2020; Tapia et al., 2019).

The SBRVC main activities and enterprises are broken down into biomass feedstock, 
biomass pre-treatment, biomass conversion, ancillary services (transportation, storage, 
product packaging services) and end-user market; together they make up the entire value 
chain. As such, the value chain involves physical attributes and needs to be designed 
with a focus on minimizing physical challenges throughout raw material production and 
conversion (Panoutsou et al., 2020), which is described as a physically efficient value 
chain. The market assets refer to the delivery of biobased products to the end-users and 
this adds an innovative nature to the value chain (Panoutsou et al., 2020). The system 
design of the SBRCVC integrates other value chain activities and enterprises within the 
IFSVC such as sanitation service (chapter 5), product design & development (chapter 
2), and product and equipment manufacturing (chapter 3) as major contributors to the 
operationalization of the SBRCVC. There are five competitive priorities that have to be 
considered to ensure that the value chain delivers the required/expected value-added 
specific targets. These competitive priorities are: (i) flexibility, (ii) quality, (iii) cost, (iv) 
innovation, and (v) transparency (Panoutsou et al., 2020) (see Figure 6.4). Meanwhile, 
the activities associated with these technologies and infrastructure include sourcing raw 
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133Sanitation biomass recovery and conversion

materials, processing, logistics, inventory management and waste management (Jarvis 
& Samsatli, 2018).

6.3.1  Biomass feedstocks
Waste biomass forms the feedstocks for the sanitation-derived resource recovery value 
chain. They are heterogeneous and chemically combined renewable-source waste 
products and/or by-products of either plants and/or animal origin (Siwal et al., 2021). 
In other words they are any organic materials derived from plants and animals that 
are classified as biomass feedstock. Biomass can also broadly be classified according to 
origin and source: biomass generated in rural (agriculture, forestry, and livestock), urban 
(sewage and municipal solid wastes), and industrial (cellulose and agri-food industries) 
areas (Ahmed et al., 2019; IREA, 2014; Saxena et al., 2009). Due to the usual abundance, 
sustainability and low price of biomass, these forms have proved to be possible options 
for the replacement of non-renewable energy and other useful products (Anukam & 
Berghel, 2021; Anukam et  al., 2016). Sanitation biomass recovery (SBR) feedstocks 
belong to the non-lignocellulosic biomass (NLB) class of biomass – waste derived from 
sewage sludge, faecal sludge and organic solid wastes (McConville et al., 2020; Rulkens, 
2008; Siwal et  al., 2021), see Figure 6.5. The blending of other classes of NLB is to 
enhance the quality of the raw materials for the production of high-value bioproducts 
such as biomass derived from municipal organic solid wastes, animal and human wastes, 
and agricultural waste (Begum et al., 2013).

However, biomass varies owing to a number of factors such as the heterogeneity of 
biomass, its application and origin (Ahmed et al., 2019). Any organic materials directly 
or indirectly derived from the process of photosynthesis is considered biomass (Anukam 
& Berghel, 2021). The chemical composition of biomass depends strongly on it sources 
(Ahmed et al., 2019; Bajpai, 2016; Popa, 2018).

Figure 6.4  Sanitation biomass recovery and conversion value chain enterprises’ activities 
(Source: Authors).
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134 Integrated Functional Sanitation Value Chain

6.3.1.1  Plant biomass feedstocks
In plants, biomass is formed through conversion of carbon dioxide in the atmosphere 
into carbohydrates in the presence of the sun’s energy.

6 6 62 2 6 12 6 2CO H O C H O Og g s g( ) ( ) ( )+ → + 	 (6.1)

Biological species will then grow by consuming these botanical or other biological 
species, adding to the biomass chain (Basu, 2018; Mamvura & Danha, 2020). The 
plant origin biomasses are commonly referred to as lignocellulosic biomass (LB) which 
is composed of an aromatic polymer (lignin) and carbohydrate polymers (cellulose, 
hemicellulose) (Anukam & Berghel, 2021; Li & Jiang, 2017).

The internal structure of LB reveals a crystalline fibrous structure of cellulose, which 
forms the core of the complex structure of biomass. The position between the micro- 
and microfibrils of the cellulose matrix is occupied by hemicellulose, while lignin plays 
a structural role that encapsulates both cellulose and hemicellulose. However, their 
complex structure greatly hinders their utilization due to the high level of crystallinity 
of cellulose as well as the cross-linking of carbohydrates and lignin (Ahmed et al., 2019; 
Chang & Holtzapple, 2000) which results in their stable and recalcitrant structure that 
make them resistant to enzymatic attack (Ahmed et al., 2019; Taherzadeh & Karimi, 
2008; Tursi, 2019), see Figure 6.6. To overcome this challenge, pre-treatments of the 
feedstock become crucial.

(I)	 Cellulose (40–50%) is a linear polymer and a complex carbohydrate (or 
polysaccharide) with a high molecular weight and a maximum of 10 000 
monomeric units of D-glucose, linked by β-1,4-glycosidic bonds. The molecular 
formula of cellulose is (C6H12O6)n (n indicates the degree of polymerization) and 
its structural base is cellobiose (i.e. 4-o-β-D-glucopyranosyl-D-glucopyranose, 
see Figure 6.7). Cellulose is the most abundant organic compound found in 
nature and plays a structural function in plant cell walls. The reactivity and 

Figure 6.5  Examples of terminology used for different types of sludge relating from sanitation 
systems. (Adapted from Englund and Strande (2019) by McConville et al. (2020). ©Swedish University 
of Agricultural Sciences (SLU), Department of Energy and Technology. Uppsala, Sweden.)
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135Sanitation biomass recovery and conversion

morphology of cellulose chains are structurally influenced by the intermolecular 
hydrogen bond between the hydroxyl group on C-3 carbon and the oxygen of the 
nearby glycosidic ring. The formation of these bonds makes the molecules more 
stable and rigid (Ahmed et al., 2019; Bernal et al., 2017; Smith et al., 2010; Tursi, 
2019).

(II)	 Hemicellulose (25–35%) is one of the major constituents of plant cell walls and 
consists of heterogeneous branched polysaccharides. It is strongly linked to the 
surface of cellulose microfibrils. The content and structure of hemicellulose are 
different depending on the type of plant (Bala et al., 2016). The various sugar 
units are arranged with different substituents and in different proportions. 
Hemicellulose decomposes thermally between 180 and 350°C, thereby producing 
non-condensable gas, coal and a variety of ketones, aldehydes, acids and furans 
(Ahmed et al., 2019; Bernal et al., 2017; Carpenter et al., 2014; Smith et al., 2010; 
Tursi, 2019). In nature, hemicellulose is amorphous and has adhesive properties, 
with a high tendency to toughen when it is dehydrated. Hemicellulose almost 
entirely consists of sugars with five carbon atoms (xylose and arabinose) and 
six carbon atoms (glucose, galactose, mannose and rhamnose) with an average 
molecular weight of <30 000 (Bonechi et al., 2017; Jindal & Jha, 2016; McKendry, 
2002; Tursi, 2019). The different groups of molecules making hemicellulose 
include xylans, mannans and arabinogalactan (Tursi, 2019), see Figure 6.8).

(III)	Lignin (15–20%) is also contained in plant cell walls, with the function of 
binding, cementing, and putting the fibres together in order to enhance the 
compactness and resistance of the plant structure. Lignin is also recognized for 

Figure 6.6  Structure of lignocellulose biomass (Source: Tursi, 2019).

Figure 6.7  The structural formula of cellulose (Source: Tursi, 2019).
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its encrusting effect as it protects fibres and prevents degradation (Tursi, 2019). 
Its elemental composition is approximately 61–65% carbon, 5–6% hydrogen 
and the remainder is oxygen (Fromm et al., 2003). Structurally, it is a complex 
amorphous aromatic polymer with a three-dimensional network composed of 
phenylpropane units linked together. The monomeric units are held together in 
different ways: through oxygen bridges between two propyl and phenyl groups, 
between a phenyl and a propyl group, or through carbon–carbon bonds between 
the same groups. In particular, this macromolecule is formed through the radical 
oxidative polymerization of three hydroxycinnamyl alcohols representing the 
basic structural monomers: p-phenyl monomer (type H), guaiacyl monomer 
(type G) and siringyl monomer (type S), deriving from coumarinic, coniferyl and 
synapyl alcohol respectively (Ahmed et al., 2019; Bernal et al., 2017; Smith et al., 
2010; Tursi, 2019), see Figure 6.9. These compounds differ from each other due 
to the different degrees of methoxylation. Overall, given the considerably high 
global availability of lignin, that is 300 billion tons, with an annual increase 
of about 20 billion tons (Hodásová et  al., 2015), development of innovative 
technologies for lignin valorization is essential.

The two main components of biomass are lignocellulosic biomass (LB) and non-
lignocellulosic biomass (NLB) which can be in the form of cellulose, hemicellulose 
and lignin (Ahmed et  al., 2019; Bernal et  al., 2017; Smith et  al., 2010; Tursi, 2019). 
Other minor components of biomass are extractives, proteins, water and inorganic 

Figure 6.8  The structural formula of hemicellulose (Source: Tursi, 2019).

Figure 6.9  The structural formula of lignin and its precursors (Source: Tursi, 2019).
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components such as silicon (Si), sodium (Na), potassium (K), calcium (Ca), magnesium 
(Mg) and aluminium (Al). These minor constituents do not significantly contribute to the 
formation of the total structure of the biomass (Anukam & Berghel, 2021; Raven et al., 
1992; Tursi, 2019).

6.3.1.2  Animal biomass feedstocks
Besides the plants and their derivatives, biomass also contain animals, microorganisms, 
and a portion of plants and materials derived from them, which are defined as non-
lignocellulosic biomass (NLB) (Li & Jiang, 2017); the components mainly include lipids, 
proteins, saccharides, inorganics, minerals as well as a fraction of lignin and cellulose 
(Anukam & Berghel, 2021; Li & Jiang, 2017). NLB also includes resources such as sewage 
sludge, faecal sludge, plants and animal organic wastes, manure, algae, animal hair and 
bone and so on (Anukam et al., 2016; Li & Jiang, 2017). It is chemically composed of C, 
H, O and N, comparable to non-renewable resources (Rana et al., 2021; Siwal et al., 2021; 
Thakur et al., 2012). NLB is an excellent architectural material, arranging various atoms 
in an orderly manner to build units. Compared with LB, the NLB usually contains more 
miscellaneous elements such as N, P, S and metals, which are embedded in the skeleton 
of its structural unit. During heat treatment, the heteroatom of its structural unit can 
act as an activator or catalyst for biomass pyrogenic decomposition (Li & Jiang, 2017). 
Also, different compositions of NLB can lead to different thermochemical conversion 
behaviour in comparison with LB; understanding NLB behaviour during heat treatment 
and its physicochemical properties is essential to optimizing the conversion process for 
efficient waste disposal, resource recovery, and preparation of functional NLB materials 
(Li & Jiang, 2017; Liu et al., 2015a; Yoshida & Antal, 2009).

(I)	 Sewage sludge (SS), a product of sewered sanitation can be described as any solid, 
semi-solid or liquid waste generated from a wastewater treatment facility. This 
wastewater can be sourced from municipal, commercial or industrial processes. 
The physical properties (low ratio of solid to liquid matter) of sewage mean it 
requires thickening and mechanical dewatering to help increase the solid particles 
to about 10–25 wt% from the original predominantly liquid (<3 wt% solid) state 
(Cieslik et al., 2015; Li & Jiang, 2017; Magdziarz et al., 2016; Oladejo et al., 2019; 
Seiple et al., 2017; Syed-Hassan et al., 2017). The solid phase in sludge is made up 
of an inhomogeneous mix of proteins, carbohydrates, oils, inorganic matter and 
micro-organisms. This mixture of organic, inorganic and living organisms results 
in an unstable, volatile and putrid matter with toxic elements (Cieslik et al., 2015; 
Li & Jiang, 2017; McConville et al., 2020; Oladejo et al., 2019; Rulkens, 2008; 
Siwal et al., 2021; Wang et al., 2016). Sewage treatment or stabilization involves 
biological (composting or digestion), physical (e.g., pressure, heat, vibration, 
microwaves) or chemical (oxidation, alkalinity adjustment) methods to stabilize 
the organic matter (including destruction of pathogens, odour elimination and 
reduction of volatile contents) contained in the primary sludge in order to improve 
the quality of effluent, maximize nutrient recovery and/or for safer disposal. The 
product of this stabilization process can be referred to as secondary sludge if it 
undergoes further biological processes (Chan & Wang, 2016; Mulchandani & 
Westerhoff, 2016; Oladejo et  al., 2019; Seiple et  al., 2017; Vaxelaire & Cézac, 
2004). Anaerobic digestion is one example of such stabilization techniques: its 
secondary sludge can be used as fertilizer while the biogas produced from the 
digester can form part of the energy recovery capabilities of the process (Oladejo 
et al., 2019; Winkler et al., 2013). The elemental composition of sewage sludge 
differs greatly from case to case despite the common elements like C, O, H and 
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N. The C content varies between 25% and 70%, caused by the high ash content 
varying from 15% to 50%. The high ash content in sewage sludge is usually 
linked with the significant levels of other elements such as P, Ca, K, Mg, Fe, Si, 
Na, and so on (Li & Jiang, 2017). On the other hand, sewage sludge contains 
many easily available plant nutrients such as N, P, K and organic matter, which 
raises wide interest in its use as a fertilizer in agriculture or as a regenerator for 
soil (Khan et al., 2013; Li & Jiang, 2017). Furthermore, it also can be used to 
produce renewable biofuel owing to its high decomposable organic content (Li & 
Jiang, 2017; Xie et al., 2014). Sustainability measures have increased focus on the 
recovery and reuse of sludge after treatment to reduce landfill requirements and 
environmental footprints, and to lessen impacts on the land, groundwater and 
food supply (Li & Jiang, 2017; Oladejo et al., 2019).

(II)	 Faecal sludge (FS), a product of non-sewered sanitation, is the raw or partially 
digested semisolid material that is produced primarily from human excreta 
and blackwater, but also includes anything else that goes into onsite sanitation 
systems such as flush-water, cleansing materials, menstrual hygiene products, 
greywater (i.e. bathing or kitchen water, including fats, oils, and grease), and 
solid wastes, and which needs to be removed periodically and transported to 
a faecal sludge treatment plant, followed by safe disposal or end-use (Barani 
et al., 2020; Strande, 2021). Faecal sludge is grouped by consistency according to 
Strande (2021) and Velkushanova (2021) as:
•	 liquid (TS <5%): which is relatively diluted with the consistency of water 

or domestic wastewater, is readily pumpable and usually collected from wet 
containments such as leach pits, septic tanks or wet pit latrines;

•	 slurry (TS 5–15%): normally thicker than liquid, but still watery with a wet 
mud consistency, pumpable in lower ranges and thus difficult to shovel; it is 
common in pit latrines (improved or unimproved) with a frequent input of 
greywater or subject to infiltration;

•	 semi-solid (TS, 15–25%): soft paste-like materials, not pumpable, but 
can be spadable at the higher end of the range; it is collected from onsite 
containments such as pit latrines, composting toilets and leach pits, or from 
dewatering treatment technologies; and

•	 solid (TS >25%): the majority of free water has been removed; it can come 
from dry toilet systems or dewatering treatment technologies.

FS recovery may support the development of viable business models for sustainable 
sanitation (Barani et al., 2020; Diener et al., 2014). The most common form of resource 
recovery from faecal sludge solids has been that of soil conditioning. However, more 
promising options have recently emerged including the use of faecal sludge as a component 
of building materials, as source of protein for animal feed and as industrial fuel (Barani 
et al., 2020; Diener et al., 2014). Other approaches for energy recovery from non-sewered 
sanitation systems are combustion (Sellgren et al., 2017), gasification (Onabanjo et al., 
2016), smouldering (Yermán et al., 2015), hydrothermal oxidation (Miller et al., 2015) 
and hydrothermal carbonization (Afolabi et al., 2017).

Other notable contributions of NLB feedstock for the SBRCVC as biomass include:

(III)	Livestock manure (LM), a predictable side-product of animal husbandry that 
adds to greenhouse gases through the release of CH4 to the environment if not 
regularly captured (Siwal et al., 2021);

(IV)	Food waste (FW), valorisation through AD, fermentation and composting 
processes can create high-value products such as biofuels, biomass, and 
biofertilizers (Siwal et al., 2021);
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(V)	 Agricultural waste (AW), which is a standard classification of carbon-rich 
biomass overflowing with cellulose, hemicellulose and lignin as lignocellulose 
(Siwal et al., 2021; Thakur et al., 2012; Zielinska et al., 2021);

(VI)	 Forestry residue (FR) is an essential lignocellulose raw material for bioenergy 
generation; pyrolysis of FR has been used to generate bio-oil and biochar 
(Demirbas & Balat, 2006; Singh et al., 2018; Siwal et al., 2021);

(VII)	 Marine processing waste (MPW), includes fish production trash such as scales, 
skin, visceral mass, air bladders, gonads, head, tails and fins, crab shells and 
shellfish waste, head, and body carapace, and much more;

(VIII)	 Manure is an important nutrients source containing abundant organic 
matters, N, P, K and other trace elements; manure from humans and animals 
is widely used as plant fertilizer. The proportions of C, O, H and N in manure 
are usually 40–50%, 30–35%, 5–7%, and 2–5% respectively; and

(IX)	 Fermentation processing waste (FPW), which includes lipids, proteins, 
and carbohydrates that can be converted into products such as fatty acids 
(acetic, propionic and butyric acid) and alcohols (ethanol and butanol) by the 
fermentation process (Chohan et al., 2020); and food processing waste (Siwal 
et al., 2021).

Other sources of feedstock are organic wastes derived from municipal activities 
such as restaurant and kitchen wastes, food processing industry waste, and agricultural 
and crop processing (crop and garden waste, sawdust, fruit, chicken and other animal 
manure and abattoir waste) (Polprasert & Koottatep, 2017).These classes of waste can 
either be reduced, recycled or transformed through the application of new and innovative 
approaches and technologies into energy, organic fertilizers, and animal feed as well as 
other useful products (Polprasert & Koottatep, 2017).

As noted earlier, although feedstock sourcing seems a simple process, technically, 
businesses still find it difficult to access enough of the right quality waste biomass to 
achieve a viable reuse business model; stronger financial viability improved feedstock 
collection (Ddiba, 2016; Koottatep et al., 2019; Polprasert & Koottatep, 2017). It is crucial 
that the SBRCVC is flexible enough to use variety of feedstock to produce high-value 
goods (Hennig et  al., 2016; Lokesh et  al., 2018). Feedstock end-of-life characteristics 
play a prominent role at any given stage of a value chain because of the capability of 
utilizing waste biomass for raw feedstock (also called ‘cascading use’), which makes it 
a sustainable business model as there will be a regular influx of low-cost feedstock that 
promises a continuous product supply to the market (Budzinski et  al., 2017; Lokesh 
et al., 2018). This strategic management and utilization of sanitation-derived feedstocks 
and organic waste could deliver three-fold benefits: environmentally through reduction 
of waste treatment and disposal; economically by enabling resource efficiency and 
through transformation of waste (as low-cost raw materials for a secondary industry); 
and socially through creation of jobs, new value chains and social equity (Lokesh et al., 
2018; Pagotto & Halog, 2016).

6.3.2  Biomass Pre-treatment processes
There are various options for enterprises in the value chain to be involved in pre-
treatment of biomass; and the most appropriate one or the most appropriate combination 
mainly depends on the subsequent conversion and utilization of that biomass, that is 
for thermochemical or biochemical conversion technologies (Papadokonstantakis & 
Johnsson, 2020). Collected biomass is subjected to pre-treatment and/or pre-processing 
to increase its resource value as well as enhance its conversion to high-quality and 
high-value bioproducts. Some common pre-processing/pre-treatment steps are mainly 
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related to removing moisture by drying and decreasing the size of biomass particle, 
typically by grinding, milling, balling and pelletizing. These steps may also influence 
the efficiency of the subsequent biomass utilization processes (Papadokonstantakis & 
Johnsson, 2020). Such processes make subsequent biomass conversion more economical 
and environmentally friendly for transportation and storage (Tapia et al., 2019).

Pre-treatment is a necessary process step for both biochemical and thermochemical 
conversion of biomass and involves structural alteration aimed at overcoming the 
recalcitrant nature of biomass. It is required to improve biomass characteristics in 
order to enhance their efficient utilization for production of high-value bioproducts 
(Anukam & Berghel, 2021; Anukam et al., 2016; Chiang et al., 2012). The main goal 
of biomass pre-treatment is to facilitate microbial digestion by removing barriers and 
making the organic content of the substrate easily accessible and usable for producing 
high-value bioproducts (Kasinath et  al., 2021). Thus, complex organic matter (e.g., 
cellulose, hemicellulose, and lignin, proteins, polysaccharides and lipids) need to be 
solubilized and hydrolysed into simple components such as long-chain fatty acids, 
sugars and alcohols (Kasinath et al., 2021; Zhen et al., 2017). Pre-treatment processes 
(also known as conditioning) are used to speed up and enhance digestion as well 
as improve dewatering and the quality of the digestate (Kasinath et  al., 2021). For 
example, in pre-treatment processes requiring the use of heat, the degradation ability 
of lignocellulosic biomass (LB) is controlled by its polymeric and aromatic constituents 
(cellulose, hemicellulose and lignin), while the heteroatoms and inorganic elemental 
components of non-lignocellulosic biomass (NLB) could act as catalysts to facilitate 
decomposition. This then forms a product that has a carbon framework with a change in 
the original structure that increases the performance of the pre-treated material during 
bioconversion processes (Anukam & Berghel, 2021; Anukam et  al., 2017; Liu et  al., 
2015a; Yoshida & Antal, 2009).

Pre-treatment technologies can be classified into physical, chemical, physicochemical 
and biological pre-treatment methods (E4tech (UK) Ltd et al., 2015; Papadokonstantakis 
& Johnsson, 2020):

(I)	 Physical pre-treatment aims to increase the accessible surface area and 
pole volume and decrease the degree of polymerisation of cellulose and its 
crystallinity.

(II)	 Chemical pre-treatment mostly uses alkalis, acids, ozonation, Fenton or Fe 
(II)-activated persulfate oxidation to delignify the biomass and decrease the 
polymerisation and crystallinity of cellulose (Kasinath et  al., 2021; Patinvoh 
et  al., 2017). The most commonly used acid is H2SO4 (Morales et  al., 2017; 
Papadokonstantakis & Johnsson, 2020) and the most common alkali is NaOH. 
These are applied to solubilise the hemicellulose fraction of biomass and make 
the cellulose accessible to enzymes. Organic acids can also be used to enhance 
cellulose hydrolysis and reduce production of inhibitors (Papadokonstantakis & 
Johnsson, 2020).

(III)	Physicochemical pre-treatment affects both physical and chemical properties 
of the biomass; among such techniques are steam explosion, ammonia fiber 
explosion (AFEX), wet explosion, CO2 explosion, and so on.

(IV)	Biological pre-treatment is carried out using microorganisms (temperature-
phased anaerobic digestion and microbial electrolysis cells) such as white rot 
fungi (Kasinath et al., 2021; Papadokonstantakis & Johnsson, 2020; Patinvoh 
et al., 2017; Sarkar et al., 2012). This alters the structure of lignin and cellulose, 
separating them from the lignocellulosic matrix.

Although biological pre-treatment is typically carried out under mild conditions, the 
rates of hydrolysis are low and current efforts focus on combining this technology with 
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other pre-treatment methods and developing new microorganisms for rapid hydrolysis 
(Kasinath et  al., 2021; Papadokonstantakis & Johnsson, 2020; Patinvoh et  al., 2017). 
Other pre-treatment methods can make use of mechanical techniques such as ultrasonic, 
microwave, electrokinetic and high-pressure homogenization (Kasinath et  al., 2021; 
Patinvoh et al., 2017).

Pre-treating sewage sludge and faecal sludge (being the main feedstock for the 
SBR) is usually characterized by high concentrations of solid and organic matter and 
a significant presence of pathogens, nutrients, and organic and inorganic pollutants, 
and involves single or combined physical, chemical and biological means to disrupt 
the floc structure of sludge and hydrolyse organic matter, as well as provide significant 
enhancements in terms of solid reduction to produce the required high-value bioproducts 
(Neumann et  al., 2016). Pre-treatment can be applied to primary, secondary and/or 
mixed sludges and has been known to significantly improve pathogen deactivation and 
sludge quality. Therefore, its application to mixed and primary sludge can be attractive 
depending on the main objective (Wilson & Novak, 2009). Pre-treatment of sludge is 
expected to rupture the floc structure as well as some bacterial cell walls, resulting in 
the release of intercellular matter in the aqueous phase (Kasinath et al., 2021), and so 
helps to reduce its high resistance to both dewatering and biodegradation. The increase 
in nutrient accessible to microbes enhance the digestion rates and reduces the retention 
time of conversion of biomass to high-value bioproducts (Kasinath et al., 2021; Khanal 
et al., 2007; Pilli et al., 2011). The first commercially used thermal pre-treatments for SS 
were Porteous and Zimpro which were implemented in the 1960s and the early 1970s; 
a modified lower temperature was subsequently used to enhance the dewaterability of 
SS (Camacho et al., 2008). During the 1980s, however, various combinations of thermal 
and pH-based (acid and alkaline) technologies were tested (e.g. Synox and Protox), but 
none were successfully commercialized owing to insufficient cost-effectiveness. In 1996 
the CambiTHP™ process, a combination of thermal hydrolysis and high pressure, was 
implemented to increase biogas production and digester loading (Neyens & Baeyens, 
2003). Then in 2006 Veolia, following their batch process Biothelys®, introduced a 
continuous-flow process called Exelys – a pre-treatment thermal hydrolysis process for 
municipal and industrial sludge, as well as for sludges containing fats, oils and grease 
(Kasinath et al., 2021).

A successful SBRCVC depends on a business model often driven by blending 
agricultural waste, food waste and organic (biodegradable) fractions of municipal solid 
waste biomass and sanitation-derived biomass (Moya et  al., 2019; Otoo & Drechsel, 
2018; Remington et al., 2018; World Bank, 2019). It should also be noted that any type 
of agricultural, food or organic fraction of municipal-waste biomass that consists of 
lignocellulose fibres will require pre-treatment (Kasinath et al., 2021). This pre-treatment 
is most frequently a combination of elevated temperature and chemical treatment, while 
thermal and other mechanical pretreatment methods are also considered (Fernandes 
et  al., 2009; Kasinath et  al., 2021). The pretreatment efficiency with respect to 
lignocellulose biomass depends mainly on the lignin content of the treated materials 
(Fernandes et al., 2009; Kasinath et al., 2021).

The detrimental effects of pretreatment for these classes of biomass include the 
formation of refractory compounds, mainly from high-thermal pretreatment. Thermoacid 
pretreatment may also generate biomass conversion inhibitors such as furans and 
phenolic compounds, which may hinder microbial activity (Taherzadeh & Karimi, 2008; 
Vavouraki et al., 2013).

6.3.3  Biomass conversion technologies
The enterprises and actors in the conversion processes generate the needed revenue for 
the SBRVC by transforming biomass resources such as collected and/or pre-processed 

Downloaded from http://iwa.silverchair.com/ebooks/book/chapter-pdf/1084664/9781789061840_0125.pdf
by guest
on 23 April 2024



142 Integrated Functional Sanitation Value Chain

biomass into valuable products (Papadokonstantakis & Johnsson, 2020; Tapia et  al., 
2019). The conversion pathways that transfer sanitation biomass to high-value biobased 
products include biochemical (photobiological hydrogen production, anaerobic 
digestion, and fermentation); thermochemical (combustion, pyrolysis, gasification, and 
liquefaction); mechanical extraction; and physical or chemical (Panoutsou et al., 2020; 
Papadokonstantakis & Johnsson, 2020). All of these allow low-value biomass resources 
to gain economic value when transformed into high-value products such as biofuels 
(biogas, biohydrogen, biodiesel), power, heat, oleochemicals that serve as substitutes 
for petroleum-based products known as petrochemicals (Papadokonstantakis & 
Johnsson, 2020; Wikipedia contributors, 2022), single-cell proteins, animal proteins, 
building materials, soil conditioners, biofertilizers, short-chain fatty acids, enzymes, 
biopesticides, bioplastics, bioflocculants and biosurfactants (Diener et  al., 2014; Eze, 
2004; Koottatep et  al., 2019; Mafakheri & Nasiri, 2014; Otoo & Drechsel, 2018; 
Papadokonstantakis & Johnsson, 2020; Polprasert & Koottatep, 2017; Puyol et  al., 
2017; Zhang et al., 2018).

The two most important physical properties of biomass, regardless of conversion 
process, are particle size and moisture content. Practically all conversion methods 
require some degree of size reduction (Williams et al., 2017). For instance, biochemical 
conversion processes can accept a greater range of particle sizes, and the final size 
needed tends to be dependent on the processing system utilized (Dibble et al., 2011; 
Van-Walsum et  al., 1996; Williams et  al., 2017). Hydrothermal liquefaction is much 
more insensitive to particle size owing to high heating rates in the liquid media (Akhtar 
& Amin, 2011; Williams et  al., 2017), but a significant amount of size reduction is 
needed to pump biomass sludges in a continuous system (Jazrawi et al., 2013; Williams 
et  al., 2017). On the other hand, moisture increases heating rates during steam pre-
treatment for biological conversion (Brownell et al., 1986; Williams et al., 2017) and 
also reduces bio-oil quality and thermochemical conversion (Bridgwater et al., 1999; 
Williams et  al., 2017) and causes low thermal efficiency in combustion processes 
(Jenkins et  al., 1998; Williams et  al., 2017). Aside from particle size and moisture 
content, other physical properties of interest include bulk density, elastic properties, 
and microstructure. Bulk density has a strong effect on transportation and handling 
costs because lower densities greatly increase transportation cost. Biomass chemical 
properties also have a large influence on the best conversion process and the quality 
of the final product. The three primary compounds of interest in biomass conversion 
are ash content, volatiles and lignin. High ash content generally has a negative effect 
on biomass conversion across the board by reducing the effectiveness of dilute acid 
pre-treatment for biological processes (Weiss et  al., 2010; Williams et  al., 2017) and 
increasing char yields and fouling in thermochemical processes such as hydrothermal 
liquefaction (HTL) (Toor et al., 2011; Williams et al., 2017), pyrolysis (Tumuluru et al., 
2012; Williams et al., 2017), and combustion (Jenkins et al., 1996; Williams et al., 2017). 
Conversion technologies covered in this chapter with reference to the SBRCVC are 
presented below:

6.3.3.1  Thermochemical conversion technologies
The shortage of conventional energy resources, as well as environmental issues related 
to landfilling the considerable amount of excess sewage sludge and faecal sludge, 
raised interest in developing methods for the utilization of sludge for energy purposes 
(Smoliński et  al., 2018). Thermochemical technology involves a high-temperature 
chemical reformation process that requires bond breaking and reforming of organic 
matter into biochar (solid), synthesis gas and highly oxygenated bio-oil (liquid). Within 
thermochemical conversion, there are three main process alternatives available: 
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gasification, pyrolysis and liquefaction (Lee et al., 2019). This conversion involves the 
complete oxidative ignition of sanitation-derived (i.e. faecal sludge) and other organic-
waste biomass with the primary aim being to produce high-temperature energy. (Siwal 
et al., 2021). Also, attention is given to thermochemical co-processing of SS and/or FS 
with fossil fuels and biomass (Garrido-Baserba et  al., 2015; Kokalj et  al., 2017) and 
pyrolysis of SS and/or FS then blended with organic solid waste as well as with biomass 
from other sources (Deng et al., 2017; Ma et al., 2017; Zhang et al., 2015). The selection of 
conversion type can be influenced by the nature and quantity of biomass feedstock, and 
the preferred type of energy, for example end-use conditions, environmental principles, 
financial circumstances and the precise nature of the project (Siwal et  al., 2021). 
Thermal conversion technologies have gained extra attention due to the availability of 
industrial infrastructure to supply thermochemical transformation equipment that is 
highly developed, short processing times, reduced water usage and the added advantage 
of producing energy from other forms of waste that cannot be digested by microbial 
activity (Uzoejinwa et al., 2018). The main business activities are the construction and 
operation of conversion installations, ensuring conversion processes’ efficiencies and 
optimization of conversion technologies (Panoutsou et al., 2020; Tapia et al., 2019). The 
challenges with regards to construction include site selection and access to technology, 
and for operations, low emission performance, handling mixed volumes of feedstocks 
and improving synergies for valorisation of residues and co-products (Panoutsou et al., 
2020).

6.3.3.1.1  Combustion technology
The combustion of all solid fuels is similar to that of sewage sludge and faecal sludge 
biomass. In the combustion process, biomass and oxygen are combined in a high-
temperature environment to form carbon dioxide, water vapour, heat and trace gases 
(Oladejo et  al., 2019), see equations (2) and (3). This process is known to produce 
approximately 90% of the total renewable energy from biomass. The use of combustion 
technology for waste materials such as sewage sludge and faecal sludge can be used 
primarily to reduce the volume of sanitation-waste materials, and later heat generation 
as well as electric generation was added as a resource recovery strategy.

Biomass Oxygen CarbonDioxide Water Heat+ → + + 	 (6.2)

The approximate chemical equation for biomass combustion is:

CH O  O CO  H O Heat1 44 0 66 2 2 21 0 3 0 72. . . .+ → + + 	 (6.3)

The amount of generated heat depends on many factors, but mainly on the types 
and quality of biomass used in the process, although the average thermal energy 
produced is 20 MJ/kg of biomass (Nussbaumer, 2003). As shown by equations (2) and 
(3), the combustion process is an exothermic reaction, that is, the biomass is burnt in the 
presence of air with subsequent release of chemical energy that could be converted into 
mechanical and electrical energy (Kaushika et al., 2016; Lebaka, 2013).

The principle of solid fuel combustion involves drying, pyrolysis, volatiles combustion, 
char combustion, ash melting and agglomeration. These stages occur sequentially or 
simultaneously depending on the configuration, reactor conditions and fuel properties. 
For example, some sludge and biomass could start pyrolysis at low temperatures  
(∼150°C) typical for fuel drying (Ogada & Werther, 1996; Oladejo et al., 2019; Urciuolo 
et al., 2012), see Figure 6.10.

The release and burning of volatiles from this stage generate heat, CO, H2O, CO2, 
NOx and SOx, which further interact with the solid char particles in the fuel and increase 
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surface temperature (Oladejo et al., 2019). The furnace operates at temperature >850°C 
for the complete oxidation of sludge which may be done separately or blended with other 
solid fuels (coal or biomass) (Chen et al., 2018; Rong et al., 2017). This process would 
require excess air for completion while auxiliary fuel and catalyst might be needed for 
initiation and maintaining reactor stability for operational efficiency. Ash and flue gas are 
the main output from this reactor. The flue gas is made up primarily of oxides of carbon, 
nitrogen, sulphur and particulate matter which act as the thermal store that allows heat 
transfer from itself to feed water. This aids heat generation for direct use (industrial or 
residential heating) or electricity generation via steam turbines and generators. After the 
heat recovery process the flue gas has to undergo treatment for elimination of pollutants 
before releasing exhaust gas (mostly CO2 and water vapour) into the atmosphere. The ash 
generated from this process can be reused in agricultural or construction applications. 
However, this depends primarily on its chemical contents, particularly the heavy metal 
content of the ash (Oladejo et al., 2019).

Combustion reactors use various technologies such as multiple hearth, rotary kiln 
and cyclone and fluidized bed furnace with different fuel needs and operating mode. The 
major challenge with combustion of sewage/faecal sludge is mostly moisture and ash 
content that influences the thermal characteristic of the fuel and the design requirements 
of the combustor. High moisture content is not only a deterrent for increasing the bulk 
density of the fuel, oxidant and energy for drying the sludge and has the potential of 
forming erosive sulphuric compounds (Han et  al., 2012). The use of ash and slags 
for other applications contributes to high phosphorus contents and negligible toxic 
compounds such as heavy metals or polycyclic aromatic hydrocarbons (PAHs) make it 
suitable for agricultural purposes or raw materials for the construction industry. Co-use 
of sludge with other fuel such as coal, biomass, other solid waste, fuel oil or gas has been 
investigated as a means of avoiding the high cost associated with dedicated reactors and 
also an avenue for reducing net carbon emissions (Oladejo et al., 2019).

Figure 6.10  Schematic representation of the combustion of sludge. (Source: Oladejo et  al. (2019) 
under CCA 4.0 license, ©, 2018 by the authors)
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6.3.3.1.2  Gasification technology
The thermochemical conversion of sewage sludge/faecal sludge’s organic content into 
high value gases such as H2 and CO known as synthesis gas as well as CO2, CH4, H2O 
and other hydrocarbon is the main basis for gasification (Oladejo et  al., 2019). The 
gasification technique comprises chemical reactions in an environment that is oxygen 
deficient. This process involves biomass heating at extreme temperatures (500–1400°C), 
from atmospheric pressure up to 33 bar and with low/absent oxygen content to yield 
combustible gas mixtures. Often described as an incomplete anodic process of organic 
materials at a high temperature (500–1800°C) to generate synthetic gas (Siwal et  al., 
2019, 2021), biomass gasification happens to be where the char acts including CO2 and 
water stream to create CO and H2. Also, the volumes of CO, steam, CO2 and H2 are 
compared very quickly on temperatures inside a reactor. Produced gas may be applied 
as fuel towards the adequate generation of power and/or heat (Colmenares et al., 2016; 
Siwal et al., 2021). The gasification process transforms carbonaceous constituents into 
syngas comprising hydrogen, carbon monoxides, carbon dioxide, methane, higher 
hydrocarbons and nitrogen with the presence of gasification agent and catalyst. By 
utilizing this syngas, various types of energy or energy carriers are supplied, for example, 
biofuel, hydrogen gas, biomethane gas, heat, power and chemicals (Lee et al., 2019).

This process is very similar to combustion with the exception of the lower moisture 
tolerance in the reactor (<15 wt%) and the deficit in stoichiometric oxidants required 
for complete combustion. The main outputs from the reactor are gases and ash. 
Depending on the chemical and mechanical properties, as well as heavy metal contents, 
the ash generated from the process can be reused in agricultural or in construction 
applications. The product gases require further processing and clean-up for either use 
in heat and electricity generation or upgrading of synthesis gas for liquid fuels and 
chemical synthesis (Oladejo et al., 2019), see Figure 6.11. Gasification reactions can be 

Figure 6.11  Schematic representation of the gasification of sludge (Source: Oladejo et al. (2019) under 
CCA 4.0 license, ©, 2018 by the authors).
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divided into sub-stages which are drying of sample (70–200°C), devolatilization (350–
600°C), oxidation of volatiles and char gasification. Hence, it can also be termed as an 
incomplete combustion or extended pyrolysis reaction in which gas–solid, gas–gas and 
liquid cracking reactions are required to maximise the gaseous product yield.

There are essentially two types of gasification technologies: autothermal (direct) 
and allothermal (indirect) gasification. In direct gasification, the heat required by the 
process is only internally generated by the partial combustion of the feedstock, whereas 
in indirect gasification, energy is also delivered to the process via the gasification agent 
(steam). Furthermore, in direct gasification all reactions occur in the same device 
while in indirect gasification, combustion reactions occur in a separate chamber that 
communicates with the gasification chamber both with mass streams (bed material, 
char, ashes and feedstock to be combusted) and energy streams (heat carried by the 
thermal inertia of the bed material itself) (Papadokonstantakis & Johnsson, 2020; Sette 
et  al., 2015). Several types of equipment are usually used for gasification: fixed bed, 
fluidized bed, including entrained flow gasifier (Papadokonstantakis & Johnsson, 2020; 
Siwal et al., 2021).

The raw material NLB substance must be well granulated for applications in 
reactors. Therefore, a trial is required, particularly for sewage/faecal sludges, municipal 
solid waste (MSW), and so on. (Siwal et al., 2021). Depending on the technology and 
biomass used, impurities may include dust, ash, bed material, sulphur and chloride 
compounds. Various types of filters (e.g. textile bag filters such as GoBiGas, Gothenburg) 
(Papadokonstantakis & Johnsson, 2020; Thunman et al., 2018) can be used to remove 
the particles from the product gas; the maximum allowable temperature of the filter is an 
important parameter for avoiding fouling in the heat exchangers cooling the raw product 
gas. Also, gas composition produced from the gasification process varies according 
to the type of gasifier, gasification agent, catalyst type and size of particle (Lee et al., 
2019) and the technique is considered to be independent autothermic route based on 
energy balance. It is revealed that biomass gasification is able to recover more energy 
and higher heat capacity compared to combustion and pyrolysis, probably due to optimal 
exploitation of existing biomass feedstock for heat and power production (Lee et  al., 
2019).

6.3.3.1.3  Pyrolysis technology
Pyrolysis is one of the thermochemical technologies for converting biomass in the absence 
of oxygen into energy and chemical products consisting of liquid bio-oil (also referred 
to as pyrolysis oil, pyrolysis tar, biocrude, wood liquid, wood oil or wood distillate), 
solid biochar (also referred to as charcoal), and pyrolytic gas (Papadokonstantakis 
& Johnsson, 2020). It involves the conversion of sewage sludge/faecal sludge without 
air at moderate operating temperature (350–600°C), although some pyrolysis reactors 
that operate at higher temperature up to 900°C exist (Oladejo et al., 2019; Ruiz et al., 
2013; Zhang et al., 2010). The output product of this process depends on the process 
temperature where char yield decreases with an increase in temperature (Oladejo et al., 
2019). There are three types of pyrolysis process that differ according to their operational 
conditions, namely slow, fast and flash pyrolysis (Lee et al., 2019), see Figure 6.12.

It should be noted that high residence time of the fuel in the reactor at low temperature 
with low heating rates promotes char production, while low or high residence time at 
high temperature promotes liquid and gas production respectively (Oladejo et al., 2019). 
The application of this technology is mostly used to maximise liquid fuel yield and energy 
recovery from sludge. The drying requirements here are greater than for combustion with 
<10% moisture tolerance in the input sludge fed into the reactor. The pyrolysis of sludge 
takes place in an inert environment at high temperature, hence an external heat source 
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(electric or thermal) would be required to supply heat for initiation of the reaction. The 
utilization of heat sourced from the partial combustion of biogas, or bio-oil derived from 
the process itself has been critically explored for ensuring self-sustainability of pyrolysis, 
particularly in waste-to-energy applications (Oladejo et al., 2019).

Pyrolysis technology can be classified based on heating rate and residence time, 
whether fast or slow pyrolysis. Fast pyrolysis generally uses a high heating rate above 
300°C/s and a short vapour residence time below 10 s, while slow pyrolysis adopts a 
relatively low heating rate (Liu et al., 2015b) and a long vapour residence time and is 
a promising technology to efficiently treat and sanitize faecal sludge from dry toilets 
(Mašek et  al., 2016). Compared with slow pyrolysis, fast pyrolysis with medium 
temperatures in the range 400–600°C usually has a higher bio-oil yield (Li & Jiang, 
2017). Inside the pyrolysis zone, biomass is exposed to an ideal heat of 700°C during a 
deficiency of O2 appearing with the production of bio-oil, char, and syngas. Synthetic 
gas is a hybrid mainly of CO, CO2, H2, CH4. These may be applied as a subsequent fuel 
to produce power. Bio-oil yields can be as high as 50–70% wt% of the dry biomass (Lee 
et  al., 2019). Even higher heating rates of 1000–10 000°C/s can achieve bio-oil yields 
of up to 80 wt% (Amutio et al., 2012). Gas and biochar yields amount to 13–25% and 
12–15% of dry biomass feed, respectively (Papadokonstantakis & Johnsson, 2020). In 
a standard method, the biomass is converted fuel-efficiently without producing slag or 
transmitting massive amounts of flue gas. The necessary methods and steps of biomass 
pyrolysis are presented below (Siwal et al., 2021):

(I)	 crushing to improve the exterior area to enhance heat transmission effect;
(II)	 dehydrating to improve the effectiveness of gas–solid resources inside the 

reactor;

Figure 6.12  Schematic representation of the pyrolysis of sludge (Source: Oladejo et al. (2019) under 
CCA 4.0 license, ©, 2018 by the authors).
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(III)	anoxic thermal degeneration of organics to produce pyrolysis outcomes (syngas, 
bio-oil, and char); and

(IV)	final subsequent processing of syngas and char.

Biomass pyrolysis reactors can be fixed bed, fluidised bed, heated kiln, rotating 
cone, screw feeder/auger and vacuum pyrolysis (Bridgwater, 2012). From these 
reactor types, bubbling and circulating fluidised beds, heated kiln and rotating cone 
have been commercialized, while others remain at the demonstration or pilot stages. 
Typical capacities for commercial scale are in the range of 0.2–20 tonnes/hours, at feed 
moisture less than 10 wt%, feed size of 0.2–50 mm and bio-oil yields of 70–75% wt% 
(Papadokonstantakis & Johnsson, 2020). Pyrolysis processes decompose organic matter 
into a solid, liquid and gas mixture. Pokorna et  al. (2009) classified the condensable 
pyrolysis products of sewage and faecal sludge into five groups:

(I)	 mainly containing oxygenated compounds (fatty acids, alcohols, phenols, etc,);
(II)	 nitrogenated compounds;
(III)	sulphur compounds;
(IV)	hydrocarbons; and
(V)	 steroids.

The gas products principally consist of carbon dioxide, carbon monoxide, methane, 
hydrogen and some volatile liquids like small fractions of phenols, 1H-indols and fatty 
carboxylic acids (Tsai et al., 2009). The difference between gasification and pyrolysis is 
that gasification produces fuel gas that can be combusted for heat generation, whereas 
pyrolysis produces liquid fuel known as pyrolysis oil (py-oil) or bio-oil that can be an 
alternative to fuel oil in static heating or in the generation of electricity (Lee et  al., 
2019). Py-oil is dark brown, with high viscosity and low calorific value and is comprised 
of several chemical components that include acids, alcohols, aldehydes, phenols, and 
oligomers that originate from lignin (Lee et al., 2019).

Converting sewage and faecal sludge to biochar addresses the stigma of fertilizer 
obtained from human excreta, since pyrolysis guarantees 100% elimination of pathogens 
with enriched nutrients in faecal-sludge biochar (Nuagah et al., 2020). Biochar is a rich 
material obtained by a thermal process (pyrolysis of biomass) in an environment low 
in oxygen, mostly for the purpose of a soil enhancer. The addition of biochar to soils 
enhances its properties and filters and retains nutrients from permeating soil water 
(Crombie et al., 2013; Nuagah et al., 2020). The biochar from sewage and faecal sludge 
decreases plant accessibility to heavy metals and the danger associated with the probable 
filtering of heavy metals into the soil that is linked with raw sewage and faecal sludge 
(Marshall & Eng, 2013; Nuagah et al., 2020).

Pyrolysis has been proven to be an effective technology for treating heavy-metal-
polluted biomass, keeping most of the metals inherently. Studies focusing on metal 
behaviour during pyrolysis of sewage sludge and/or faecal sludge demonstrated that 
most of the common heavy metals (e.g. Cr, Ni, Cu, Zn and Pb) are retained in the biochar 
with pyrolysis temperature below 800°C (Jin et al., 2017; Van Wesenbeeck et al., 2014). 
If the faecal sludge is not dry, the initial energy input will go toward volatilizing the 
water in the sludge before pyrolysis proceeds (Andriessen et al., 2019). Also, the NLB’s 
biochar mainly contains C, O, H, N, P, and minerals, with percentage ratios highly 
affected by the mineral contents (Li & Jiang, 2017; Marshall & Eng, 2013; Nuagah et al., 
2020). Compared with the thermochemical conversion of LB, an important difference in 
the pyrolysis process of NLB is attributed to the massive existence of heteroatoms and 
metals (Li & Jiang, 2017).

In recent years, improvements to py-oil properties have become a major concern. 
The enhancement of py-oil is desired so that it could be utilized as a substitute for crude 
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oil. There are several routes for upgrading the py-oil that include physical, chemical 
and catalytical approaches (Lee et al., 2019). Hot vapour filtration is the most frequent 
method for physical upgrading of py-oil to get better bio-oil. It enables a reduction in 
the initial molecular weight of the oil and slows down the rate of bio-oil aging. Hot gas 
filtration eliminates char and inorganic materials from the oil, which is initiated due to 
the removal of highly unstable compounds of ring-conjugated olefinic substituents and 
the conversion of guaiacol-type compounds to catechol- and phenol-type compounds 
(Case et al., 2014).

Hydrodeoxygenation upgradation (HDO), also known as hydrotreatment, is another 
strategy that offers enhanced oil yield, high oil quality and higher carbon recovery. This 
process involves the removal of oxygen from oxygenated hydrocarbons via catalytic 
reactions at high pressure (up to 200 bar (20 MPa)), hydrogen supply and moderate 
temperature (up to 400°C) (Lee et al., 2019; Zhang et al., 2013). It is stated that the HDO 
process is able to improve the py-oil quality by refining oil stability and increases energy 
density (Furimsky, 2000; Huber et al., 2006; Lee et al., 2019; Li et al., 2010). According 
to Lee et al. (2019), there are four main reactions that affect the HDO of py-oil:

•	 hydrogenation of C-O, C = O and C = C bonds;
•	 dehydration of C-OH group;
•	 condensation and decarbonylation of C-C bond cleavage using retro-aldol
•	 hydrogenolysis of C–O–C bonds.

The main challenge in HDO of py-oil is deactivation of the catalyst which is 
necessary for effective synthesis for the HDO process (Lee et al., 2019). An alternative 
method in upgrading py-oil is the use of catalysts and involves the use of methods for 
enhancing pyrolysis oil quality: (i) the use of downstream process by means of metallic 
or bi-functional (hydrogenating and acidic) catalysts; and (ii) in situ upgrading by 
integrated catalytic pyrolysis (Dhyani & Bhaskar, 2018). In a catalytic process, the 
vapour that is produced by pyrolysis will go through extra cracking within the catalyst 
pores for formation of desirable low-molecular weight compounds (Lee et al., 2019).

6.3.3.1.4  Hydrothermal liquefaction technology
Hydrothermal liquefaction (HTL), also known as hydrothermal carbonization (HTC), 
involves chemical and physical transformations of carbohydrates into a carbonaceous 
residue under conditions of wet, high temperature (180–350°C) and autogenous pressure 
(Li & Jiang, 2017). In the hydrothermal system, water that exists in a subcritical or 
supercritical state simultaneously acts as medium, reactant and catalyst at a medium 
temperature range of 250–374°C for 1–12 hours and operating pressure of 40 to 220 
bar (4–22 MPa) to convert biomass into bio-oil and biochar (Lee et al., 2019). The HTL 
process comprises decomposition and repolymerization reactions for bio-oil conversion, 
aqueous dissolved chemicals, solid deposits and gas. The high pressure in the HTL 
process helps to maintain water in a liquid state, whilst the blending of elevated pressure 
and temperature leads to a decrease in the electric constant and density, which influence 
the hydrocarbons to be water soluble (Pambudi et al., 2017; Tursi, 2019), see Figure 6.13.

This process has shown more advantages and potential than dry carbonization 
processes (e.g. pyrolysis) for feedstocks containing high moisture. It could be a viable 
way to dispose of waste streams and realize the value-added utilization (Berge et al., 
2011). For example, the process of dehydrating sewage sludge/faecal sludge is time-
consuming and costly, owing to the high moisture content. In order to solve this problem, 
the hydrothermal treatment method was employed to change the physical and chemical 
properties of SS/FS to yield bio-oil and biochar (Andriessen et al., 2019; Vardon et al., 
2011, 2012). A variety of feedstock can be converted to biochar with carbon content 
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similar to lignite with a mass yield of 35–60% via HTL/HTC processes (Kruse et al., 
2013; Vardon et al., 2012). A biochar yield of 50–80% was observed with faecal sludge, 
and higher-value products were obtained even at a lower temperature (Afolabi et  al., 
2017). The HTC process was found to improve the calorific value of faecal sludge fuel 
from 16 to 19 MJ/kg as well as to eliminate long drying times on drying beds (Fakkaew 
et al., 2015a, 2015b; Koottatep et al., 2016). More HTC reactors exist at a pilot scale, but 
few full-scale examples exist at present (Román et al., 2018). Sewage and faecal sludge 
are promising feedstocks for HTL/HTC processes as they are readily available in large 
volumes. In addition, compared to dry sludge, exploiting wet sludge is able to decrease 
the consumption of energy by 30% (Li et al., 2009).

6.3.3.1.5  Torrefaction technology
Torrefaction can be described as the thermal treatment of biomass to create an output 
that can be densified by palletization to produce a more energy-dense output called 
torrefied pellets (TOPs) or pieces, sharing related features to coal (Batidzirai et al., 2013; 
Siwal et al., 2021). Torrefaction is usually a first stage that is followed by pyrolysis and 
finally gasification during biomass heat treatment or biomass decomposition (Lange, 
2007). It is a low-temperature biomass thermal decomposition process that produces 
carbon-rich biochar (Mimmo et  al., 2014). Biomass partly decomposes during this 
process generating both condensable and non-condensable gases; the resulting product 
is a solid substance rich in carbon that is referred to as biochar, torrefied biomass or 
biocarbon (Lehmann et al., 2011). The torrefaction process is also referred to as roasting, 
slow and mild pyrolysis, wood-cooking and high-temperature drying (Bergman & Kiel, 
2005). As reported in several studies (Agar & Wihersaari, 2012; Bridgeman et al., 2010; 
Chew & Doshi, 2011; Mamvura & Danha, 2020; Nunes, 2020; Prins et al., 2006), and as 
shown in Figure 6.14, torrefaction leads to:

(I)	 Improved energy density;
(II)	 Better ignition;

Figure 6.13  Biomass liquefaction scheme. (Source: Tursi, 2019)
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(III)	 Less moisture;
(IV)	 Higher C/O and C/H ratio;
(V)	 Improved grind-ability thereby reducing energy required for grinding;
(VI)	 Biomass that is hydrophobic that is that has less affinity for water;
(VII)	 More homogenized biomass that is torrefaction devolatilizes, depolymerizes 

and carbonizes the biomass; and
(VIII)	 Reduces microbial activity.

This technology enhances combustion performance, particularly in boilers for energy 
production and for pyrolysis and gasification applications (Basu, 2018), and also leads to 
better storability of the treated biomass (Mamvura & Danha, 2020). Temperature and 
retention time are two main parameters that influence torrefaction process efficiency 
(Wannapeera et al., 2011). Torrefaction is usually conducted at temperatures between 200 
and 300°C (Eseltine et al., 2013), and the process temperature is maintained for 15–60 
minutes (Verhoeff et al., 2011). Choosing the specific value of those two key parameters for 
different types of biomass is essential to develop cost-effective biomass treatment (Pulka 
et al., 2019). Sewage sludge (SS) and faecal sludge (FS) can be valorised via a torrefaction 
also known as low-temperature pyrolysis. SS/FS are suitable substrates for the torrefaction 
process in the production of low-quality fuel and/or a source of nutrients essential for plant 
growth (Nunes, 2020; Pulka et al., 2020). Torrefaction of SS/FS increases the C density and 
produced biochar that contains a smaller amount of O and H in its structure (Nunes, 2020; 
Poudel et al., 2015; Pulka et al., 2020). It could also be used as pre-treatment for SS/FS by 
easing its grindability and improving some of its fuel properties (Atienza-Martínez et al., 
2015; Nunes, 2020). The method involves cutting down the biomass to achieve sufficient 
drying and over 20% humidity, and then a tiny portion of the raw biomass is applied as fuel 
to the humid content during aeration and torrefaction. The torrefied biomass can then be 
used as a replacement for charcoal since it is hydrophobic and resistant to degeneration. 
(Agar & Wihersaari, 2012; Nunes, 2020; Siwal et al., 2021).

Figure 6.14  Main constituent compounds of each of the fractions formed during the torrefaction 
process. Nunes, L.J.R. (2020) A case study about biomass torrefaction on an industrial scale: solutions 
to problems related to self-heating, difficulties in pelletizing, and excessive wear of production 
equipment. Applied Sciences by MDPI under CCA 4.0 license, ©, 2020 by the authors.
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6.3.3.1.6  Plasma gasification technology
Plasma gasification of waste biomass is a technologically advanced non-incineration 
thermal process that uses extremely high temperatures in an oxygen-starved environment 
to decompose input waste materials completely into very simple molecules (Mountouris 
et  al., 2008). Plasma which consists of free electrons, ions, and neutral particles 
is defined as the fourth state of matter. Also, the presence of electrons and charged 
particles is what allows plasma to be considered as neutral. Plasma is thermally and 
electrically conductive due to the charged particles and can be described as an ionized 
gas (Roth, 1994). Plasma can be partially ionized as well as fully ionized (Bogaerts et al., 
2002). It can occur at different temperatures and densities and there should be sufficient 
energy in the medium to form plasma from the gas. Also, energy in the medium should 
be continuous to sustain the plasma, as without sufficient energy to form plasma, the 
particles will turn to neutral gases. The energy used here can be electrical, thermal, or 
ultraviolet light, and so on (Sanlisoy & Carpinlioglu, 2017). The unconventional method 
found in plasma gasification system can be used to convert sanitation-biomass such as 
SS/FS into synthesis gas and an inert vitreous by-product material known as slag, an 
efficient energy form (Imris et al., 2005; Sanlisoy & Carpinlioglu, 2017).

This technology utilizes the conversion of a variety of fuels such as sewage sludge, 
faecal sludge, industrial, medical or municipal wastes and low-grade coals into syngas 
that mainly include CO, H2, and CO2. The produced syngas can be used as fuel in 
combustion systems, for the generation of electricity and for the production of hydrogen 
as well as slag and ash (Sanlisoy & Carpinlioglu, 2017). A standard plasma gasification 
technology reactor is operated within the range of 400–850°C and does not use any 
external heat source, relying on the process itself to sustain the reaction (Littlewood, 
1977; Mountouris et  al., 2008). Normal gasifiers are really partial combustors, and a 
substantial portion of carbon is combusted just to support the reaction (Mountouris 
et al., 2008). Plasma at high temperature breaks down nearly all the materials to their 
elemental form excluding the radioactive materials (Lemmens et al., 2007; Mountouris 
et  al., 2008), see Figure 6.15. As a result of the high temperature, toxic compounds 
decompose to harmless chemical elements. In fact, this is the advantage it offers in 
comparison with conventional methods of gasification.

Figure 6.15  Block diagram of plasma gasification process. Mountouris, A., Voutsas, E., and Tassios, D. 
(2008) Plasma gasification of sewage sludge: process development and energy optimization. Energy 
Conversion and Management ©, 2008 Elsevier Ltd.
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The plasma furnace is the central component of the system where the gasification/
vitrification process takes place. Two graphite electrodes, as a part of two transferred 
arc torches, extend into the plasma furnace. An electric current is passed through the 
electrodes and the conducting receiver, that is the slag in the furnace bottom. The gas 
introduced between the electrode and the slag that becomes plasma can be oxygen, 
helium or other, but the use of air is very common due to its low cost (Mountouris 
et al., 2008). As the temperature is maintained within the plasma furnace, the organic 
molecules contained in the sewage sludge begin to break down and react with air to form 
carbon monoxide, hydrogen and carbon dioxide. Water contained in the sludge feed also 
dissociates and reacts with other organic molecules. As a result of these reactions, all 
organic constituents and water are transformed into a synthesis gas containing mostly 
hydrogen, carbon monoxide and nitrogen (Mountouris et al., 2008). The basic types of 
plasma reactors are:

•	 plasma fixed bed reactor;
•	 plasma moving bed reactor;
•	 plasma entrained bed reactor or plasma spout bed reactor (Sanlisoy & Carpinlioglu, 

2017; Tang et al., 2013).

6.3.3.2  Biochemical conversion processes
Biochemical conversion processes allow the decomposition of biomass to available 
carbohydrates, which could be converted into liquid fuels and biogas, as well as different 
types of bioproducts, using biological agents such as bacteria, enzymes, and so on 
(Mahalaxmi & Williford, 2014; Tursi, 2019). Biochemical transformation is mainly the 
process of enzyme secretion released by microorganisms to control energy production and 
conversion into solid fuel (Siwal et al., 2021). They can also be referred to as biological pre-
treatments aimed to turn biomass into a number of products and intermediates through 
selection of different microorganisms or enzymes. The process provides a platform to 
obtain fuels and chemicals such as biogas, hydrogen, ethanol, butanol, acetone and 
a wide range of organic acids (Chen & Qiu, 2010; Garba, 2020). This process is used 
when the intention is to make products that could replace petroleum-based products and 
those obtained from grain. Biomass biochemical conversion technologies are clean, pure 
and efficient when compared with other conversion technologies (Chen & Wang, 2016; 
Garba, 2020); classical options are composting and other sanitation-derived nutrients 
for agriculture, and anaerobic digestion.

6.3.3.2.1  Composting and other sanitation-derived nutrients
Compost is a soil-like substance resulting from controlled aerobic degradation of the 
organic material in sewage sludge, faecal sludge and/or co-combined with some other 
biomass conversion composting facility to support agricultural productivity (McConville 
et  al., 2020; Nikiema et  al., 2020; Otoo & Drechsel, 2018; Otoo et  al., 2018). It is a 
fertilizing process that can be described as the natural breakdown of biomass through 
the process of biodegradation with the aid of a microbial population in an aerobic 
environment to CO2, H2O, heat and a further stable output named fertilizer (Siwal et al., 
2021). The fertilizer is trouble-less, simple to manage and may be harmlessly employed 
in farming to improve the soil (Irvine et al., 2010; Kalyani & Pandey, 2014). Compost 
is a soil conditioner that contains nutrients and organic matter and it contributes to 
the formation of humus in the soil, thus improving soil structure and water retention 
capacity. By adding carbon to soil, compost also contributes to soil carbon storage 
capacity, which supports climate change mitigation (McConville et al., 2020; Nikiema 
et  al., 2020). The composting prices provides significant amounts of the three main 
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components of agricultural fertilizer: nitrogen (N), potassium (K), and phosphorus 
(P; in the form of phosphate), and when sanitation materials are processed along with 
other organic waste even more N, P, and K can be recovered. Sanitation materials also 
contain micronutrients such as iron, chlorine, boron, copper and zinc, which are vital 
for plant and human or animal nutrition, but not generally found in synthetic fertilizer 
(Andersson et al., 2020; Singh et al., 2016- Figure 6.16).

There has been enhanced consideration provided to heat healing through aerobic 
composting operations as a process to develop their commercial feasibility (Siwal et al., 
2021; Smith & Aber, 2017). The composting progression is driven by the C/N proportion 
of the biomass, pile wetness, oxygen stages and heat which are strictly observed (Fan et al., 
1981; Siwal et al., 2021). Three classes of microorganisms called bacteria, actinomycetes 
and fungi are extravagant during the fertilizing method (Polprasert & Koottatep, 2017; 
Siwal et al., 2021). Other composting conversion technologies that provide nutrients for 
agriculture are:

(I)	 Vermicomposting and vermifiltration are two low-cost options for human and 
organic biomass treatment in which earthworms are used as biofilters under 
aerobic conditions. The end product is worm cast or compost that is a nutrient-
rich organic fertilizer and soil conditioner. Also the worms can be harvested 
from the system, depending on the processes and earthworms can reduce the 
volume of the faecal sludge by 60 to 90%. The two important parameters are 
moisture content and the carbon to nitrogen (C:N) ratio. The most commonly 
used method of vermicomposting is the in-vessel method in which the compost 
is held in an open vessel. Vermifiltration happens in a watertight container that 
can receive more liquid inputs such as blackwater or water sludge (McConville 
et al., 2020);

(II)	 Black soldier fly composting and/or black soldier fly larvae (BSFL) treatment 
technology is a biological process that relies on the natural growing cycle of 
the black soldier fly (Hermetia illucens (L.), Diptera Stratiomyidae. The BSFL 
feed only during the larvae stage, then migrate for pupation and do not feed any 
more, even during the adult stage. The treatment residue, comprised of the larval 

Figure 6.16  Outline of composting process. Singh, J., Kalamdhad, A.S., and Lee, B.K., 2016: published 
in effects of natural zeolites on bioavailability and leachability of heavy metals in the composting 
process of biodegradable wastes. Useful Minerals by IntechOpen under CCA 3.0 license, ©, 2016 by 
the authors.
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droppings and undegraded material appears as a compost-like material that can 
be used as soil conditioner. The larvae can be harvested as a source of protein 
for animal feed (McConville et al., 2020; Polprasert & Koottatep, 2017);

(III)	Composting toilet conversion technology is also known as composting based-
sanitation systems, dry toilets, biological toilets, biotoilets or waterless toilets 
(Anand & Apul, 2014; Del Porto & Steinfeld, 1998; Polprasert & Koottatep, 2017). 
A composting toilet has two primary components, the toilet and the composting 
tank. The other parts of a composting system often include a fan and vent pipe 
to remove any odour. The toilet in composting is a waste collector whereby the 
waste is collected into the composting tank and digested aerobically. Some 
systems may use earthworms (vermicomposting) as an alternative to aerobic 
composting (Hill & Baldwin, 2012; Polprasert & Koottatep, 2017; Yadav et al., 
2010). Bulking agent or amendments (e.g. sawdust, leaves, and food waste) are 
often added to help co-manage different types of waste, adjust carbon to nitrogen 
ratio, and increase porosity of the compost. These toilets are often equipped with 
mechanical mixers that homogenizes the compost matrix to maintain conditions 
favourable to aerobic digestion where organic matter is oxidized into ammonia, 
carbon dioxide, and humus. The end product from these toilets contain stable, 
high molecular weight dissolved organic matter (Narita et al., 2005; Polprasert 
& Koottatep, 2017) that can be recycled as soil fertilizers (Anand & Apul, 2014; 
Polprasert & Koottatep, 2017).

The practice of composting has the ultimate objective of a closed-loop approach that 
promotes the circular bioeconomy paradigm through the collection, transportation, 
treatment and recovery of bioresources from sanitation materials using technologies 
such as urine deviated vacuum toilets, anaerobic digesters, struvite (Mg(NH3)PO4) 
precipitation to recover high-value products like water, nutrients, organic matter, energy, 
and so on; and offers sustainable solutions to sanitation management (Kujawa-Roeleveld 
& Zeeman, 2006; Lens et al., 2001; Maurer et al., 2012; Polprasert & Koottatep, 2017; 
Wielemaker et  al., 2018; Zeeman, 2012). Also, the organic matter in wastewater and 
excreta mainly consist of proteins, carbohydrates and fats, that is captured and processed 
through composting or fermentation process, it could be used as a potent soil conditioner 
and source of energy when supplemented with food waste and agricultural residues (Lal, 
2008; Polprasert & Koottatep, 2017). Increasing soil organic matter (SOM) supports 
soil functions such as retaining nitrogen and other nutrients, retaining water, protecting 
roots from diseases and parasites, and making retained nutrients available to the plants 
(Bot & Benites, 2005; Polprasert & Koottatep, 2017).

Other sanitation-derived biomass nutrients bioproducts include:

(I)	 Stored urine from urine-diverting sanitation systems – primarily made of 
nitrogen and phosphorus in their mineralized forms and are directly accessible 
to plants. It can be applied as a liquid fertilizer in agriculture or as an additive to 
enrich compost (McConville et al., 2020; Polprasert & Koottatep, 2017);

(II)	 Concentrated urine – a nutrient solution obtained by removing water from 
urine. Water removal is achieved through evaporation, distillation or reverse/
forward osmosis of urine. The finished product is between 3–7% of the initial 
volume. In order to ensure that nitrogen is not lost in the process, nitrification 
or acidification of the urine is done prior to volume reduction. Depending on 
the pretreatment process, the majority of the nutrients are retained (McConville 
et al., 2020; Polprasert & Koottatep, 2017);

(III)	Dry urine – a nutrient-rich solid fertilizer produced by dehydrating and 
concentrating human urine in an alkaline substrate (pH >, 10). Dry urine’s 
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treatment technology (i.e. alkaline urine dehydration) can be implemented 
using different alkaline substrates, which will determine the composition and 
physicochemical properties of the dried product. The dried urine captures nearly 
all of the fertilizing nutrients in urine (McConville et al., 2020);

(IV)	Sanitised blackwater – refers to blackwater that has been treated in order to 
reduce microbial risks. Since black water is toilet waste collected with flush 
water, the water content is rather high since excreta have a low volume of total 
solid (TS) (∼4%) even without flushwater. Lime treatment can be done by the 
addition of quick lime (CaO) or slaked lime [Ca(OH)2]. Ammonia sanitization is 
done by adding urea or aqueous ammonia (NH3) solution to increase the NH3 
concentration so that it inactivates pathogens. The addition of urea or ammonia 
also increases the nitrogen concentration of the blackwater (McConville et al., 
2020; Polprasert & Koottatep, 2017);

(V)	 Digestate – material remaining after the anaerobic digestion of any feedstock. 
The feedstock can consist of foodwaste, agricultural or industrial organic waste, 
sludge or wastewater fractions. The digestate in this context is the liquid, non-
dewatered digestate from wet fermentation of sludge, possibly mixed with other 
feedstocks. Digestate in this form is a mixture of liquid and particles/solids and 
can also be called ‘slurry’. It is often applied as fertilizer or soil conditioner 
in agriculture. To be a soil conditioner, it should contain organic material to 
increase the organic carbon (McConville et al., 2020);

(VI)	Struvite – often referred to as magnesium ammonium phosphate hexa-hydrate 
(MAP), is a phosphate mineral that occurs naturally in sanitation systems. It is a 
common precipitate in pipes and heat exchangers and can also be purposefully 
extracted from waste streams through the addition of magnesium to urine. 
Struvite precipitation can be applied to reduce phosphorus concentrations in 
effluents while at the same time generating a product that can be applied as a 
fertilizer or industrial raw material (McConville et al., 2020); and so on.

Consequently, composting could be an attractive solution for treating faecal/sewage 
sludge and other organic waste when blended together. It provides an opportunity to 
sanitize the sludge, recover nutrients from sanitation biomass and then return them back 
to soil especially in areas where soil organic matter is depleted due to poor agricultural 
practices or a lack of fertilizer use (Cofie et al., 2009; Moya et al., 2019). Also, several 
container-based sanitation companies successfully produce sanitation-derived fertilizer 
and sell their full production in the local market (Moya et al., 2019). As a result of the 
high nutrient value of the compost and/or co-compost as well as other sanitation-derived 
nutrients, many farmers in Africa, Asia and Latin America are very eager to use it in crop 
production because it also offers a cheaper alternative source to nutrients and is much 
more readily available (Cofie & Adamtey, 2009; Nikiema et al., 2013). The World Health 
Organization (WHO) has developed guidelines to promote the safe use of human excreta 
in agriculture, realizing its resource value and nutrient content for crop production. This 
has resulted in recent developments of technology and pre-agricultural use of sanitation 
materials such as composting of dried, faecal sludge, sewage sludge, co-composting with 
other organic matter and enriched with inorganic fertilizer (Nikiema et al., 2013, 2014).

6.3.3.2.2  Anaerobic digestion (AD)
Anaerobic digestion (AD) is one of the most sustainable and cost-effective technology 
for sanitation-derived biomass and other organic waste biomass as well as other form of 
waste treatment for energy in the form of biofuels. This process does not only minimize 
the amount of waste, but also transforms such waste into bioenergy. Also, the digestates 
produced during the process are rich in nutrients and can serve as fertilizers for agricultural 
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purposes (Garba, 2020; Li et al., 2019; Polprasert & Koottatep, 2017). AD is a common 
profitable process owing to its vast energy improvement into the formation of CH4 and its 
inadequate ecological influences; and is additionally capable of deactivating pathogens 
and stabilizing solid fuel production (Polprasert & Koottatep, 2017; Sawatdeenarunat 
et  al., 2015; Siwal et  al., 2021; Zhen et  al., 2017). This is a biological process that 
occurs in an inert environment that converts organic compounds into biogas by using 
microorganisms. The use of naturally occurring bacteria for biodegradation involves 
a series of biochemical stages, for example, hydrolysis, acidogenesis (fermentation), 
acetogenesis and methanogenesis (Lee et al., 2019; Oladejo et al., 2019; Polprasert & 
Koottatep, 2017; Rulkens, 2008; Siwal et al., 2021 – Figure 6.17).

The metabolic stages is used for mass and volume reduction of the sludge while 
the organic contents are converted to biogas by the pathogens. The hydrolysis stage 
involves the conversion of the non-toxic organics into simple sugars, fatty acid and 
amino acids. Afterwards, the acidogenesis and acetogenesis stages aid the fermentation 
of the hydrolysis products into acetate, carbon dioxide and hydrogen gas, which are 
further converted to methane through methanogenesis (Lee et al., 2011; Polprasert & 
Koottatep, 2017). Each stage of the process affects the performance of the digester. The 
dewatered sludge can be used directly for energy recovery and aids the conversion of 
volatile organic solids in the digester. Parameters that affect the yield and energy content 
of the biogas include nutrient profile of biomass, operating temperature, operating pH, 
biomass loading rate, as well as hydraulic and solid retention time. The hydraulic and 
solid retention time must be optimized so that the hydrolysis process (rate-determining 
step) is not limited by slow loading rate and the methanogenesis process is not bounded 
by rapid loading rate (Lee et al., 2019; Sialve et al., 2009).

The digester is an air-tight tank where micro-organisms are aided by physical, 
biological or chemical catalysts (heat, enzymes and/or solvents) for the decomposition 
of organic matter (Oladejo et  al., 2019; Polprasert & Koottatep, 2017). Chemical 
pre-treatment mainly involves the use of strong reagents such as acid and alkali and 

Figure 6.17  Schematic representation of the anaerobic digestion of sludge. Oladejo J, Shi K, Luo X, 
Yang G, Wu T., 2019: published in A review of sludge-to-energy recovery methods. Energies by MDPI 
under CCA 4.0 license, ©, 2018 by the authors.
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oxidants for adjusting the pH of the sludge such that the yield of biogas is maximised 
by increasing the soluble organic fraction (Devlin et  al., 2011; Oladejo et  al., 2019; 
Polprasert & Koottatep, 2017; Valo et al., 2004). Mechanical pre-treatments involve the 
use of mechanical vibrations such as ultra-sonication to disrupt of the organic solid in 
the sewage sludge (Devlin et al., 2011; Oladejo et al., 2019; Polprasert & Koottatep, 2017; 
Valo et al., 2004). Physicochemical pre-treatment such as microwave radiation quickens 
biological, chemical and physical processes due to heat and/or pressure treatment for 
improving sludge digestibility and is currently commercially available (Nielsen et  al., 
2011; Oladejo et al., 2019; Polprasert & Koottatep, 2017).

The effluent gas is biogas which is made up of 60–70% methane, 30–40% carbon 
dioxide and trace elements of other gases (H2S) with total calorific value of up to, 
28.03–38.92 MJ/Nm3 (Aryal & Kvist, 2018; Oladejo et al., 2019; Polprasert & Koottatep, 
2017; Sivagurunathan et al., 2017; Syed-Hassan et al., 2017). The biogas with its high 
methane content can be recovered for heat and electricity production using boilers, 
turbines and generators or alternatively upgraded for use as biomethane. There is 
also the potential of upgrading biogas to 97.55% methane through the use of water 
scrubbers. These increases the calorific value of the biogas from, 28.03 to 51.31 MJ/Nm3 
(Aryal & Kvist, 2018; Polprasert & Koottatep, 2017). The remnant, after the digestion 
process, has high nutritional contents (phosphorus, potassium and nitrogen) that could 
be used as compost and/or fertilizers for agricultural and soil reclamation purposes 
(Oladejo et  al., 2019; Polprasert & Koottatep, 2017). Biogas energy can offset about 
50% of the operational energy used in wastewater treatment facilities. The energy can 
be used at other sources or sold to the grid. The utilization of this biogas contributes 
to the reduction of greenhouse gases emissions (Mills et al., 2014; Oladejo et al., 2019; 
Xu et al., 2014).

6.3.4  Ancillary services
Ancillary services are support activities provided by the enterprises in the SBRVC to 
ensure operational reliability and maintenance of the value chain. They also create 
the conditions within which the main activities of the operators are carried out. These 
services are storage, transportation, and product packaging services.

(I)	 Storage facilities: Storage ensures that the pre-processed biomass is either 
transported to conversion processes or stored for future demand (Tapia et al., 
2019). The SBRCVC enterprises require blended feedstock with other organic 
waste materials and this becomes a challenge as more types of feedstock are 
introduced into the systems. Practically, storage facility stocking is required to 
align with the biomass conversion plan. Therefore, storage facilities are essential 
to the smooth operations of the SBRVC (Tapia et al., 2019). They include simple 
stacks in the biomass generation plants or sites and in centralised storage sites. 
These activities also require energy for preservation of feedstock (Tapia et al., 
2019).

(II)	 Transportation services: Transportation infrastructure enable demand satisfaction 
of one or many resources through its movement from one geographic region to 
another. In the SBRCVC pre-processed biomass is transported to storage sites 
and to conversion plants as well as to end-users’ market (Tapia et  al., 2019). 
This is done through any means of adequate transportation infrastructure and 
services available such as road, rail, waterways or any combination of them, but 
must be based on the type of biomass, path shape and distance of distribution as 
well as the demand of customers (Tapia et al., 2019).
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(III)	Product packaging services: Product packaging is the act of containing, 
protecting and presenting the contents through the long chain of production, 
handling and transportation to their destination as good as they were, at the 
time of production (Adebisi & Akinruwa, 2019). It is the overall feature that 
underlines the uniqueness and originality of the product and becomes an 
ultimate selling proposition, which stimulates the impulse buying behaviour 
(Adebisi & Akinruwa, 2019; Silayoi & Speece, 2005) Packaging provides 
physical protection, information transmission, convenience, barrier protection, 
security and marketing to biomass products after conversion (Pongrácz, 2007). 
In addition to the above, packaging provides protection and preservation to 
products while at the same time supporting distribution and sales of the products 
(Pongrácz, 2007). Indicators of safety and usage instructions that describe 
how end-users should use the product are provided on packages along with 
information about the contents, the products, as more or less a message from 
the manufacturer to the customer (Pongrácz, 2007; Selke, 1990). Being biobased 
products requires packaging that assure preservation and helps in loading, 
collection, and product stabilization during transportation and storage. This 
keeps products from shifting and falling as well as reduces damages, breakage 
and keeping waste as well as related cost to a minimum (Alexander, 1997; 
Pongrácz, 2007). Distributing bulk and liquid biobased products is virtually 
impossible without packaging; and packaging should help make a favourable 
impression, aid identification, and stimulate purchase as well as provide visual 
pleasing that attracts attention, which is important in an increasingly competitive 
environment (Pongrácz, 2007; Young, 2002). Also, a wide range of materials are 
used for packaging applications, including metal, glass, wood, paper or pulp-
based material, plastics, ceramics, or a combination of more than one materials 
as composites (Pongrácz, 2007).

6.3.5  End-Use markets/direct local End-users
The end-use of biomass-based products include activities related to distribution and final 
consumers’ use. Products should be compatible with existing infrastrcture, standards 
and distribution channels (Panoutsou et al., 2020). Customer acceptance and successful 
market uptake will be subjected to their fitness as substitute for existing products and 
commodities in sectors (e.g., chemical, food, energy etc.) (Panoutsou et  al., 2020). 
Thus, end-use market depends on social feasibility because technology and product 
for sanitation-derived biomass products should meet social acceptance to ensure that 
such products find a place in the market (Tyagi & Lo, 2013). The biomass market 
includes farmers who make use of the biofertilizers and other soil amendment organic 
matters. Others are the industrial markets of refined biomass finished products such as 
biofuels, which may include the chemical industry, pharmaceutical industry, fertilizer 
manufacturers and food producers (Ruamsook & Thomchick, 2014; Tyagi & Lo, 2013), 
as well as the biobased industrial products which are the end-markets’ customers of 
biobased products, such as building materials, animal protein, biogas, and so on 
(Ruamsook & Thomchick, 2014).

6.4  SBRVC COMPETITIVE PERFORMANCE PRIORITIES
The five competitive performance priorities of (i) flexibility, (ii) quality, (iii) cost, 
(iv) innovation, and (v) transparency are factors that the SBRCVC requires to operate 
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well to achieve performance-based competitive advantages in a sustainable and resource 
efficient manner (Panoutsou et al., 2020):

(I)	 Flexibility – refers to how the SBRCVC operations responds to external factors, 
and adjust capacity and product design to meet end-users expectations (Henshall, 
2018; Panoutsou et al., 2020). Flexibility is essentially to reduce the cost of the 
impacts of external factors that may negatively affect the value chain. It also 
ensures that there is all year-round supply of feedstock to meet the requirement 
of the conversion pathway for quality production and timely delivery of high-
value products (Panoutsou et al., 2020).

(II)	 Quality – deals with maintenance and commitment to best standards of systems’ 
and products’ performance that ensures the delivery of high-value bioproducts 
to the consumer. It also focuses on continuous improvement of processes and 
products performance as well as adherence to quality standards (Díaz-Garrido 
et al., 2011; Panoutsou et al., 2020). Therefore, quality of feedstocks, practices 
and end-products are important for successful establishment and uninterrupted 
operations throughout the value chain (Fritsche & Iriarte, 2014; Panoutsou 
et al., 2020).

(III)	Cost – addresses the reduction of production costs of goods sold as well as 
generating added-value (Panoutsou et  al., 2020; Saarijarvi et  al., 2012). The 
competitiveness of the SBRCVC relies on the cost of each stage and biomass 
conversion accounting for almost half of the total (Fritsche & Iriarte, 2014; 
Panoutsou et al., 2020). Creating value with innovation and reducing cost along 
the chain is important for commercial viability of the enterprises and actors 
within the value chain (Lee, 2002; Panoutsou et al., 2020).

(IV)	Innovation – addresses new and improved processes and products as well as 
equipment in each stage of the chain and among enterprises and actors within 
the value chain (Panoutsou et al., 2020; Torjai et al., 2015). With sanitation and 
organic-waste biomass being major resource for the sustainability of the value 
chain, innovation becomes the key in defining which value chain configurations 
perform best and is resource efficient as well as effective (Fritsche & Iriarte, 
2014; Panoutsou et al., 2020); and

(V)	 Transparency – provide current information about the status of the system to 
avoidance of displacing other activities or product sectors as this is of great 
importance for the development of the sanitation and organic-waste biomass 
sector (Panoutsou et al., 2020; Torjai et al., 2015). There is, therefore, the need 
to provide clarity and awareness of the benefits from the implementation of the 
value chain as well as create trust among the society’s members (Panoutsou 
et al., 2020).

6.5  CASE STUDIES
6.5.1  Reusing wastewater and sludge in crop production in Braunschweig, 
Germany
The city of Braunschweig, located in the Federal State of Lower Saxony, Germany has 
a wastewater reuse scheme managed by the Wastewater Association of Braunschweig 
since 1954. The members of this association are drawn from the city of Braunschweig, the 
water association of the neighbouring city of Gifhorn, and 430 owners of land cultivated 
and/or leased to farmers. The physical and natural conditions in Braunschweig are rather 
favourable to the reuse of wastewater for agricultural production, since agricultural 
soils in the region are sandy and poor in nutrients limited water and nutrient retention 
capacity (Maaß & Grundmann, 2016; Ternes et al., 2007); this means that a continuous 
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additional supply of water and nutrients is essential for crop production. The value chains 
of wastewater treatment in the city linked crop production and bioenergy production 
(which are organized by the Braunschweig Wastewater Association), see Figure 6.18. The 
outputs resulting from the primary and secondary treatment of wastewater, including 
secondary treated effluent and sewage sludge, are further processed in the value chains 
of wastewater treatment and reused water as inputs for crop production in the value 
chains of food and energy. The energy crops are inputs for the anaerobic digestion step 
in the bioenergy value chain. In this way, the material flows of value chains (including 
wastewater treatment, crop production and bioenergy production) are linked, based on 
the agricultural reuse of treated wastewater and sludge. The wastewater of Braunschweig 
and the surrounding communities is delivered for primary purification to a wastewater 
treatment plant with a capacity of 60 000 m3d−1 and a population equivalent of 350 000.

The current treatment process includes mechanical treatment, biological phosphate 
removal, in combination with nitrification and denitrification, and anaerobic stabilization 
of sludge (Maaß & Grundmann, 2016; Ternes et al., 2007). In addition, a downstream 
system of irrigation and infiltration fields is used for the final treatment of the secondary 
effluent. The largest part of the effluent (60%) is used directly for irrigation on croplands 
of the member farmers (about 2700 ha). The remaining part (40%) is discharged to 
infiltration fields (about 220 ha) near the treatment plant. These infiltration areas serve 
as a natural treatment step by using a meandering system and soil passage before the 
drained water is discharged to the surface water bodies.

Figure 6.18  Linkages between the value chains of the wastewater reuse scheme in Braunschweig. 
Reprinted from Maaß, O. and Grundmann, P. (2016) Added-value from linking the value chains 
of wastewater treatment, crop production and bioenergy production: a case study on reusing 
wastewater and sludge in crop production in Braunschweig (Germany). Resources, Conservation and 
Recycling, 107, 195–211, with permission from Elsevier.
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The sewage sludge produced is stabilized via anaerobic digestion and utilized in two 
different value chains. In the winter period, the sewage sludge is dewatered and stored 
on-site before it is transported in the summer time to croplands (700 ha) of farmers who 
are not members of the association in the greater Braunschweig area. Subsequently, the 
sludge is spread by the association’s staff and the farmers incorporate the sludge into 
the croplands. During the vegetation period, the sewage sludge is added to the effluent 
prior to irrigation. The mix of effluent and sewage sludge is discharged to a gravity sewer 
system that brings the mixture to the irrigation fields. The mixture is then spread by the 
association’s staff on the croplands of the member farmers. However, due to precautionary 
hygienic restrictions, farmers are not allowed to produce fruit or vegetables in the 
association territory for direct consumption (Bezirksregierung Braunschweig, 2001; 
Maaß & Grundmann, 2016). Therefore, the main crops cultivated in the irrigation area 
are maize, grain and sugarbeet. The wastewater reuse scheme was enhanced in 2007 by 
the installation of a biogas plant operated by the association’s members.

6.5.2  Commercialization of human excreta derived fertilizer in Haiti and Kenya
6.5.2.1  Sustainable organic integrated livelihoods (SOIL) – Haiti
SOIL started as a not-for-profit organization in Northern Haiti in 2006 with the approach 
that access to safe sanitation was a human right; their aim was to provide dignified and 
safe sanitation to deprived communities that were not served by municipal sanitation in 
two cities of Haiti, Cap Haitian and Port au Prince. SOIL provides household dry toilets 
on a lease basis with a service fee directly collected from customers. They provide their 
6000 customers with urine-diverting toilets at a cost of $3.20 per month, and six collectors 
collect the faeces weekly (about 350 tonnes per year) and transform it into compost. 
Faeces are contained in sealed buckets and then collected in carts and transferred to the 
waste treatment site by truck. Toilet customers add a cover material after each toilet use 
– sugar cane bagasse or peanut husks, included in the service fee charged by SOIL – to 
obtain the optimal carbon to nitrogen ratio for composting. The buckets are emptied into 
large composting bins with walls made up of pallets filled with carbon-rich material such 
as straw to allow for air to flow through and provide sufficient aeration in the bin. The 
bin is sealed when full and left untouched for 2–3 months depending on the temperature 
and pathogen concentration evolution in the compost bins. The compost bin is then 
emptied, and the material arranged into windrows where further degradation of the 
material occurs. The piles are turned once a month for about six more months until the 
compost properties fulfil the quality criteria set internally. Temperature, moisture, pH 
and E.coli concentration are monitored throughout the process to ensure compliance 
with WHO standards for thermophilic composting and the safety of the final product. 
SOIL has chosen to sell its fertilizer to NGOs because they can buy it in large quantities 
and have greater purchasing power than farmers.

6.5.2.2  Sanergy – Kenya
Sanergy is a social enterprise that has provided safe sanitation in urban slums of Nairobi 
through shared dry toilets since 2011. They use urine-diverting dry toilets as part of a 
franchise system (called Fresh Life Initiative) which local entrepreneurs join. They invest 
in a toilet and operate it as a pay-per-use public toilet, at a cost of $0.05 per use. Another 
model exists where toilets are installed in accommodation compounds and leased to 
landlords as an extra service provided to tenants. The toilet entrepreneur or tenants 
(depending on the model) are responsible for the maintenance and cleaning of the toilet, 
and for sourcing cover material (usually sawdust) and adding it to the faeces. A third 
model exists for toilets installed in schools, where toilets are sold to head teachers at a 
subsidized price to ensure adequate sanitation coverage. About 30 000 people are being 
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served at the time of reporting, and 60 people are employed in composting and collection. 
The sanitation and waste management arm of Sanergy are separate: the toilet business, 
Fresh Life Initiative, being not-for-profit and the waste management arm, Sanergy, is a 
social enterprise, which collects and treats toilet waste. Similarly to the SOIL system, the 
waste is collected in sealed containers and transported by truck to the waste treatment 
facility, about 400 tonnes per month. There the containers are emptied into a mixing 
tank where additional organic wastes are added, such as agricultural residues. After 
the mixing phase, the material is laid out in windrows, which are mechanically turned 
and watered. Process performance is periodically monitored by measuring process 
parameters (temperature, moisture, pH, CO2, pathogen concentration, germination 
tests). The resulting compost is sieved, bagged and sold for agricultural use once the piles 
meet the WHO guideline standards, which permits their sale to vegetable growers, who 
receive a good return on investment from the use of fertilizer. The fertilizer production 
processes are different between the two ventures, as illustrated in Figure 6.19.

6.6  CONCLUSION
Viable business models could emerge from designing SS/FS management systems 
around resource recovery as this could in turn help ensure sustainable provision of 
adequate sanitation (Brands, 2014; Murray & Ray, 2010; Puyol et al., 2017; Tyagi & Lo, 
2013; Zhang et al., 2018), as sustainable sanitation management involves the recovery 

Figure 6.19  Visual summary of SOIL and Sanergy’s compost production processes. Moya, B., 
Sakrabani, R., and Parker, A. (2019) Realizing the circular economy for sanitation: assessing enabling 
conditions and barriers to the commercialization of human excreta derived fertilizer in Haiti and Kenya. 
Sustainability by MDPI under CCA 4.0 license, ©, 2019 by the authors.
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and reuse of valuable products and the minimisation of the possible adverse impact 
of SS/FS on both environmental health and human health (Zhang et al., 2018). Thus, 
there are two components in SS/FS that are technically and economically feasible to 
recycle: nutrients (primarily nitrogen and phosphorus) and energy (carbon) (Campbell, 
2000). There are several options available for energy recovery from sanitation-
waste biomass. The outstanding routes are anaerobic digestion of sludge with biogas 
recovery; co-digestion, incineration and co-incineration with energy recovery; pyrolysis; 
gasification; supercritical (wet) oxidation; use in the production of construction materials; 
production of biofuels (hydrogen, syngas, bio-oil); electricity generation by using specific 
microbes; and beneficial recovery of heavy metals, nutrients (nitrogen and phosphorus), 
protein and enzymes (Brands, 2014; Koottatep et  al., 2019; Polprasert & Koottatep, 
2017; Puyol et al., 2017; Tyagi & Lo, 2013; Zhang et al., 2018). There are global examples 
of beneficial reuse of resources recovered from SS/FS. The major factors behind this 
concept are sustainability and environmental concerns, especially those due to resource 
depletion, soil pollution and global warming. Also, hikes in energy prices, stringent 
directives for sludge disposal, and increasing protest from environmental authorities 
and from the public domain (Kalogo & Monteith, 2008; Tyagi & Lo, 2013) contribute 
effectively. However, the technical feasibility, risks, costs and benefits of the SBRCVC 
activities and products all need to be assessed to determine viability of each of the value 
chain pathways and products. The quality of sanitation-biomass-derived products and 
their market values are important factors with respect to the future feasibility of these 
processes (Zhang et al., 2018).

6.8  Journal entry
(I)	 Find out the level of sanitation biomass recovery and conversion activities 

between non-governmental organizations (NGOs) and private business 
enterprises in your area and indicate their differences and similarities.

(II)	 What SDGs does the sanitation biomass recovery and conversion value 
chain (SBRCVC) have the potential to enhance?

6.7  Take action
(I)	 Identify sanitation biomass recovery and conversion business enterprises 

and other actors in your local area and country
(II)	 Conduct an informal survey to determine the operational and financial 

viability of such ventures

6.9  Reflection
What is your perspective on the sanitation biomass recovery and conversion value 
chain at global, national and local levels and what can be done to improve and 
strengthen the value chain?
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