Appendix 2 Conversion of units

A2.1 POWER AND ENERGY

It is important to distinguish between power and energy. Power is energy *per time unit*, the *rate* of energy production or consumption. The SI (International System of Units) or metric unit of energy is joule (J) and 1 J is defined as 1 Ws (wattsecond).

1 *J* is the designated name for the work 1 *newton* \cdot *metre*, in other words, the force 1 *newton* along the length 1 *metre*. The basic *power* unit watt (*W*) is defined as 1 *J/s*.

1 J = 1 Ws (wattsecond) 1 megajoule (MJ) = 10⁶ J 1 gigajoule (GJ) = 10⁹ J

Kilowatt-hour (kWh) is a standard unit of electric energy. Since 1 kW (kilowatt) = 1,000 W and 1 hour = 3,600 seconds we get:

 $1 \, kWh = (10^3 \, W) \cdot (3600 \, s) = 3.6 \cdot 10^6 \, Ws = 3.6 \cdot 10^6 \, J = 3.6 \, MJ$ (exact).

1 MW (megawatt) = $10^3 kW = 10^6 W$ (typically, a large industrial plant or wastewater treatment system has a power rating of the order MW).

© 2019 The Author. This is an Open Access book chapter distributed under the terms of the Creative Commons Attribution Licence (CC BY-NC-ND 4.0), which permits copying and redistribution for non-commercial purposes with no derivatives, provided the original work is properly cited (https://creativecommons.org/licenses/by-nc-nd/4.0/). This does not affect the rights licensed or assigned from any third party in this book. The chapter is from the book *Clean Water Using Solar and Wind: Outside the Power Grid*, Gustaf Olsson (Author). doi: 10.2166/9781780409443_0185

186 Clean Water Using Solar and Wind: Outside the Power Grid

In a thermal power plant, we must distinguish between the *electric* power (MW_e) and the *thermal* power (MW_{tb}) .

1 *GW* (gigawatt) = $10^3 MW$ (a typical power capacity of a large nuclear power plant). 1 *TWh* = 1,000 *GWh* = $10^6 MWh$ = $10^9 kWh$ = $10^{12} Wh$

The annual electric energy use for a nation is typically expressed in *TWh*. For example, all used water treatment in Sweden requires annually about 0.6 TWh = 600 GWh. Consequently, there is an average power level of 600/8,760 = 0,068 GW = 68 MW every hour of the day and night. With nine million inhabitants, every citizen uses on average 7.5 W for used water treatment. About the same power and energy is used for supplying drinking water.

We still see the old unit horsepower in American publications:

1 horsepower = 1 hp = 746 W

A2.2 PRESSURE

The metric unit for pressure is *pascal* (*Pa*), where $1 Pa = 1 \text{ Newton}/m^2$, which is a very low pressure.

1 bar = $10^5 Pa = 0.1 MPa$; 1 MPa = 10 bar

Old units are:

1 psi (pound/inch²) = 6,895 Pa; 1 bar = 14.5 psi

A2.3 HEAT CONTENT

Before it was realised that heat was a form of energy, it was measured in terms of its ability to raise the temperature of water. The calorie and the British thermal units were defined in this way.

Calorie (cal): In a traditional definition one calorie is the amount of heat required to raise the temperature of 1 gram of water by 1° C, from 14.5°C to 15.5°C.

British thermal unit (Btu) is the English system analogue of the calorie.

1 *Btu* is the amount of heat required to increase the temperature of one pound of water (which weighs exactly 16 ounces) by 1° F.

1 Btu = 251.9958 cal.

In 1948 it was decided that, since heat is a form of energy, the SI unit for heat should be the same as for all other forms of energy, the joule. One *cal* is defined to be 4.1860 J (exactly) with no reference to heating of water. (The "calorie" used in nutrition is really a kilocalorie.)

The relationship between the kWh and the Btu depends upon which "Btu" is used.

1 megajoule $(MJ) = 10^6 J = 0.278 kWh = 947.8 Btu; 1 kWh = 3412 Btu$ 1,000 Btu = 0.293 kWh; 100,000 Btu = 1 therm

The unit "quad" is often used in the U.S.:

1 quad = 1 quadrillion (10¹⁵) Btu = 1.05506 * 10¹² megajoule (MJ) = 1.055 EJ (note that quadrillion in Europe = 10²⁴)

A2.4 VOLUME, AREA AND LENGTH

Some common metric length units:

- 1 micron = 1 micrometre = $10^{-6} m$
- 1 angstrom $(\mathring{A}) = 10^{-10} m$ (named after the Swedish physicist A. J. Ångström, 1814–1874)

$$10 \text{ \AA} = 1 \text{ } nm = 10^{-9} \text{ } m$$

Metric area units:

1 hectare = $100^2 m^2$ 1 km² = $1000^2 m^2$

Non-metric units:

- 1 US gallon = 3.78 litres; 1 UK gallon = 4.546 litres = 1.2 US liquid gallons
- 1 American barrel = a liquid measure of oil, usually crude oil = 42 US gallons = 159 litres
- *Barrel of oil equivalent* refers to the energy equal to a barrel of crude oil,

 $= 5.8*10^6 Btu$ or 6119 MJ

Acre-foot (the volume of one acre (4,047 m^2 or 43,560 ft^2) with the depth of 1 foot (0.305 m)) is often used, particularly in the

188 Clean Water Using Solar and Wind: Outside the Power Grid

U.S., to denote the annual water consumption for a family or for irrigation.

1 acre-foot=4,047 $m^2 \cdot 0.305 m = 1,233.5 m^3$ (=43560 $ft^3 = 326,700$ gallons). 1 cubic foot = $0.305^3 m^3 = 0.0284 m^3 = 28.4$ litres; 1 $m^3 = 35.25$ cubic feet

A2.5 MASS

- 1 pound (*lb*) = 0.4536 *kg*
- 1 metric ton = 0.984 long ton or English ton

A2.6 CONCENTRATION

Concentrations are often measured in mg/l (=ppm, parts per million) = kg/m^3

A2.7 WATER USE IN ENERGY PRODUCTION/ GENERATION

In some US sources we find gallons/MBtu (millions of Btu):

1 *MBtu* = 293 *kWh* = 1054 *MJ* 1,000 gallon/*MBtu* = 12.9 litres/*kWh* = 3.59 *litres/MJ* 1 *litre/MJ* = 279 gallons/*MBtu*

A2.8 ENERGY USE IN WATER OPERATIONS

kWh/million gallons:

1,000 *kWh*/million gallons = 1 *MWh*/million gallons = $0.264 kWh/m^3$ 1 *kWh*/m³ = 3,780 *kWh*/million gallons = 3.78 MWh/million gallons

kWh/acre-foot:

1,000 kWh/acre-foot = 1 MWh/acre-foot = $0.81 kWh/m^3$ 1 kWh/m³ = 1230 kWh/acre-foot = 1.23 MWh/acre-foot