Appendix 2

Conversion of units

A2.1 POWER AND ENERGY

It is important to distinguish between power and energy. Power is energy per time unit, the rate of energy production or consumption. The SI (International System of Units) or metric unit of energy is joule (J) and $1 J$ is defined as $1 W s$ (wattsecond).
$1 J$ is the designated name for the work 1 newton \cdot metre, in other words, the force 1 newton along the length 1 metre. The basic power unit watt (W) is defined as $1 \mathrm{~J} / \mathrm{s}$.
$1 J=1 W s$ (wattsecond)
1 megajoule $(M J)=10^{6} J$
1 gigajoule $(G J)=10^{9} \mathrm{~J}$
Kilowatt-hour $(k W h)$ is a standard unit of electric energy. Since 1 kW (kilowatt) $=1,000 \mathrm{~W}$ and 1 hour $=3,600$ seconds we get:
$1 k W h=\left(10^{3} W\right) \cdot(3600 s)=3.6 \cdot 10^{6} W s=3.6 \cdot 10^{6} J=3.6 M J$ (exact).
1 MW (megawatt) $=10^{3} \mathrm{~kW}=10^{6} \mathrm{~W}$ (typically, a large industrial plant or wastewater treatment system has a power rating of the order $M W)$.

In a thermal power plant, we must distinguish between the electric power $\left(M W_{e}\right)$ and the thermal power $\left(M W_{t h}\right)$.
$1 \mathrm{GW}($ gigawatt $)=10^{3} \mathrm{MW}$
(a typical power capacity of a large nuclear power plant).
$1 \mathrm{TWh}=1,000 \mathrm{GWh}=10^{6} \mathrm{MWh}=10^{9} \mathrm{kWh}=10^{12} \mathrm{~Wh}$
The annual electric energy use for a nation is typically expressed in $T W h$. For example, all used water treatment in Sweden requires annually about $0.6 T W h=600 \mathrm{GWh}$. Consequently, there is an average power level of $600 / 8,760=0,068 G W=68 M W$ every hour of the day and night. With nine million inhabitants, every citizen uses on average 7.5 W for used water treatment. About the same power and energy is used for supplying drinking water.

We still see the old unit horsepower in American publications:

$$
1 \text { horsepower }=1 \mathrm{hp}=746 \mathrm{~W}
$$

A2.2 PRESSURE

The metric unit for pressure is pascal (Pa), where $1 \mathrm{~Pa}=1$ Newton $/ m^{2}$, which is a very low pressure.

$$
1 \mathrm{bar}=10^{5} \mathrm{~Pa}=0.1 \mathrm{MPa} ; \quad 1 \mathrm{MPa}=10 \mathrm{bar}
$$

Old units are:
1 psi $\left(\right.$ pound $/$ inch $\left.^{2}\right)=6,895 \mathrm{~Pa} ; \quad 1$ bar $=14.5 \mathrm{psi}$

A2.3 HEAT CONTENT

Before it was realised that heat was a form of energy, it was measured in terms of its ability to raise the temperature of water. The calorie and the British thermal units were defined in this way.

Calorie (cal): In a traditional definition one calorie is the amount of heat required to raise the temperature of 1 gram of water by $1^{\circ} \mathrm{C}$, from $14.5^{\circ} \mathrm{C}$ to $15.5^{\circ} \mathrm{C}$.

British thermal unit (Btu) is the English system analogue of the calorie.

1 Btu is the amount of heat required to increase the temperature of one pound of water (which weighs exactly 16 ounces) by $1^{\circ} \mathrm{F}$.
$1 \mathrm{Btu}=251.9958 \mathrm{cal}$.

In 1948 it was decided that, since heat is a form of energy, the SI unit for heat should be the same as for all other forms of energy, the joule. One cal is defined to be $4.1860 J$ (exactly) with no reference to heating of water. (The "calorie" used in nutrition is really a kilocalorie.)

The relationship between the $k W h$ and the Btu depends upon which "Btu" is used.

1 megajoule $(M J)=10^{6} \quad J=0.278 \mathrm{kWh}=947.8 \mathrm{Btu} ; 1 \mathrm{kWh}=3412 \mathrm{Btu}$ $1,000 \mathrm{Btu}=0.293 \mathrm{kWh}$;

100,000 Btu $=1$ therm
The unit "quad" is often used in the U.S.:
1 quad $=1$ quadrillion $\left(10^{15}\right) \mathrm{Btu}=1.05506 * 10^{12}$ megajoule $(M J)=$ $1.055 E J$ (note that quadrillion in Europe $=10^{24}$)

A2.4 VOLUME, AREA AND LENGTH

Some common metric length units:
1 micron $=1$ micrometre $=10^{-6} \mathrm{~m}$
1 angstrom $(A)=10^{-10} m$ (named after the Swedish physicist A. J. Ångström, 1814-1874)
$10 \AA=1 \mathrm{~nm}=10^{-9} \mathrm{~m}$
Metric area units:
1 hectare $=100^{2} \mathrm{~m}^{2}$
$1 \mathrm{~km}^{2}=1000^{2} \mathrm{~m}^{2}$
Non-metric units:
1 US gallon = 3.78 litres; 1 UK gallon = 4.546 litres = 1.2 US liquid gallons
1 American barrel = a liquid measure of oil, usually crude oil $=42$ US gallons = 159 litres
Barrel of oil equivalent refers to the energy equal to a barrel of crude oil,
$=5.8 * 10^{6} \mathrm{Btu}$ or 6119 MJ
Acre-foot (the volume of one acre $\left(4,047 \mathrm{~m}^{2}\right.$ or $\left.43,560 \mathrm{ft}^{2}\right)$ with the depth of 1 foot $(0.305 \mathrm{~m})$) is often used, particularly in the

188 Clean Water Using Solar and Wind: Outside the Power Grid
U.S., to denote the annual water consumption for a family or for irrigation.

1 acre-foot $=4,047 \mathrm{~m}^{2} \cdot 0.305 \mathrm{~m}=1,233.5 \mathrm{~m}^{3}\left(=43560 f \mathrm{f}^{3}=326,700\right.$ gallons $)$. 1 cubic foot $=0.305^{3} \mathrm{~m}^{3}=0.0284 \mathrm{~m}^{3}=28.4$ litres; $\quad 1 \mathrm{~m}^{3}=35.25$ cubic feet

A2.5 MASS

1 pound $(\mathrm{lb})=0.4536 \mathrm{~kg}$
1 metric ton $=0.984$ long ton or English ton

A2.6 CONCENTRATION

Concentrations are often measured in $m g / l$ ($=p p m$, parts per million) $=k g / m^{3}$

A2.7 WATER USE IN ENERGY PRODUCTION/ GENERATION

In some US sources we find gallons/MBtu (millions of Btu):
$1 \mathrm{MBtu}=293 \mathrm{kWh}=1054 \mathrm{MJ}$
1,000 gallon $/ \mathrm{MBt} u=12.9$ litres $/ \mathrm{kWh}=3.59$ litres $/ \mathrm{MJ}$
1 litre/MJ = 279 gallons/MBtu

A2.8 ENERGY USE IN WATER OPERATIONS

$k W h /$ million gallons:
$1,000 \mathrm{kWh} / \mathrm{million}$ gallons $=1 \mathrm{MWh} / \mathrm{million}$ gallons $=0.264 \mathrm{kWh} / \mathrm{m}^{3}$
$1 \mathrm{kWh} / \mathrm{m}^{3}=3,780 \mathrm{kWh} /$ million gallons $=3.78 \mathrm{MWh} /$ million gallons
$k W h / a c r e-f o o t:$
$1,000 \mathrm{kWh} /$ acre-foot $=1 \mathrm{MWh} /$ acre-foot $=0.81 \mathrm{kWh} / \mathrm{m}^{3}$
$1 \mathrm{kWh} / \mathrm{m}^{3}=1230 \mathrm{kWh} /$ acre-foot $=1.23 \mathrm{MWh} /$ acre-foot

