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ABSTRACT

Carbonate bedrock regions represent that 14% of Earth’s continental surface and carbon (C) sink in karst water plays an

important role in the global C cycle due to the CO2 consumption during carbonate mineral weathering. Intensive agriculture

and urbanization have led to the excessive input of nitrogen (N) into aquatic systems, while the high concentrations of inorganic

C in the karst water might affect the N cycle. This paper summarized the characteristics of water in karst regions and discussed

the N transformation coupled with the C cycle in the condition of high Ca2þ content, high pH, and high C/N ratios. Carbonates

can consume more atmospheric and pedologic CO2 than non-carbonates because of their high solubility and high rate of dis-

solution, resulting in the higher average CO2 sink in karst basins worldwide than that in non-karst basins. Therefore, carbonate

mineral weathering and aquatic photosynthesis are the two dominant ways of CO2 absorption, which are termed as coupled

carbonate weathering. As the alkalinity and high C/N content of karst water inhibit the denitrification and mineralization pro-

cesses, the karst aquatic environment is also served as the N sink.
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HIGHLIGHTS

• Karst aquatic systems contain high contents of DIC, Ca2þ, Mg2þ, and high pH.

• C–N cycles in the karst aquatic systems are mainly related with DIC and NO3
�.

• Enhanced nitrification and DIC can promote aquatic communities growth.

• Atmospheric CO2 sink in carbonate area is high.
1. INTRODUCTION

1.1. Karst evolution and the urgency of carbon balance

The term ‘karst’ refers to regions that typically developed from carbonate rocks. These rocks mainly include
mineral calcite (CaCO3) and mineral dolomite (CaMg(CO3)2), containing limestone and dolomite rock or dolos-
tone, respectively (Hartmann 2015). Carbonate bedrock regions represent 14% of Earth’s continental surface,

including broad swaths of southwestern China. The southwestern China karst region is one of the largest globally
continuous karst areas, covering ∼540� 103 km2 over eight provinces (Zhang et al. 2020). Carbonate karst
aquifers serve as the drinking water source for about one-quarter of the global population (Ford &

Williams 1989).
Stress on climate change due to carbon dioxide (CO2) emissions has increased significantly in recent decades,

which is attributed to deforestation, the change of land-use type, and the use of fossil fuels (Melnikov & O’Neill

2006). Liu et al. (2015) estimated that China’s cumulative carbon (C) emission during 2000–2013 was nearly 2.9
gigatons, which was larger than China’s estimated total forest sink during 1990–2007 (2.66 gigatons of C). More-
over, this estimated C sink was still undervalued in terms of deserts and karst formations. In China, two
considerable challenges for estimating C sink are the amount of CO2 emitted and absorbed by the landscape.
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As limestone degradation could be a substantial inorganic C sink, the C sink in the karst area might play an
important role in the global C cycle and the balance of China’s C emission.

1.2. The important role of carbon sink in karst water

Water plays a critical role in the C cycle in the karst area, as it is a basic medium to transform derived organic and

inorganic carbon, and C can also be exchanged with the atmosphere in the form of CO2 across the water–air
interface. Previous studies have shown that many non-karst (mainly silicate area) rivers are usually supersatu-
rated with CO2, then leading to the emissions of CO2 (Butman & Raymond 2011; Wang et al. 2011; Rasilo
et al. 2017). However, in karst water, such as rivers, lakes, and reservoirs, carbonate mineral weathering con-

sumes CO2 with a more rapid ratio and, therefore, increases the concentrations of dissolved inorganic carbon
(DIC) (mainly HCO�

3 ) (Berner 2003; Liu et al. 2011). As DIC can be consumed by aquatic phototrophs by photo-
synthesis and transformed to organic C in inland water, the absorption of CO2 continues and forms karst C sink

rapidly (Liu et al. 2011). Therefore, it is of great importance to understand the role of karst processes as a global C
sink and the quantification of C fluxes.

1.3. Excessive input of nitrogen (N) in karst water

Intensive agriculture and urbanization have led to the excessive input of N into the soil and further increased the

amount of nitrate (NO3
�) in water (Xin et al. 2019), as well as changed the N cycle process in the aquatic ecosys-

tem. Human activities have delivered 64 Tg N/yr to rivers and streams in the 20th century, which doubled that in
the 19th century (34 Tg N/yr) (Beusen et al. 2016). It has been shown that the cycling of C and N in karst aquatic

systems is closely related to each other, as coupled C–N cycling is involved in the transformation of DIC into
dissolved organic carbon (DOC) (Zhao et al. 2021). The increasing anthropogenic atmospheric CO2 emissions
result in a progressive increase in N limitation in plants. C sequestration and increased atmospheric CO2 concen-
trations would lower terrestrial N availability and lead to decreases in N flux to the atmosphere and N deposition

to aquatic ecosystems. As industrial and agricultural discharge drives a sharp increase in anthropogenic N emis-
sions, the magnitude of N from this anthropogenic input will likely become large enough to sustain similar
conditions of ecosystem N availability (McLauchlan et al. 2013). The elevated DIC concentrations in karst

water may also enhance the aquatic photosynthetic uptake of DIC (Liu et al. 2010b, 2011) and then may promote
N translation. However, the interactions between N translation and CO2 absorption in karst aquatic ecosystems
have not been well depicted.

1.4. Objectives

In this review, we provide an overview of the relevance of karst regions to the special water characteristics and
discuss the impact on the N transformation due to these specific water characteristics. We (1) start with an intro-
duction to the characteristics of karst water, (2) present an overview of N transformation in karst water systems,

(3) discuss the processes related to carbon sink, and (4) show the challenges and new directions in karst water
C/N balances.
2. CHARACTERISTICS OF KARST WATER

2.1. The characteristic of carbonate weathering

The carbonate weathering is formulated as CaCO3þCO2þH2O↔HCO�
3 þCa2þ and CaMg(CO3)2þ 2CO2þ

2H2O↔ 4HCO�
3 þCa2þ þMg2þ. CO2 consumed during carbonates dissolution would finally be released to

the atmosphere by the precipitation of carbonates in the oceans (Berner et al. 1983), and the kinetics of dissol-
ution is much faster as compared to precipitation considering the ocean turnover time (timescales of ,3 ka).

Therefore, carbonate weathering is critical in global CO2 balances (Van Cappellen & Qiu 1997; Kump et al.
2000).

CO2 was absorbed by raindrops formed in the atmosphere, and of which the concentration would further

increase after precipitation and infiltration in the soil due to vegetation and microbial processes. Furthermore,
the CO2 in soil water could dissolve the bedrock underlying soil, composed of carbonate rock, during percolation
of soil moisture in the karst area. Previous research found that the contribution of carbonates, e.g. HCO�

3 , to the

total dissolved load in the lakes and rivers worldwide was up to 38% (Ferris et al. 1994).
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2.2. High contents of HCO�
3 , Ca

2þ, and Mg2þ in alkaline karst water

The rapid process of carbonate weathering resulted in remarkably higher concentration of bicarbonate and cal-

cium in water in carbonate terrains as compared to silicate terrains (Liu & Dreybrod 1997; Liu et al. 2007;
Raymond et al. 2008). Therefore, the reaction between carbonate minerals and CO2, which increases DIC
(DIC¼CO2(aq)þHCO�

3 þCO2
3�) concentrations, may impact the C cycle and represent a net sink of atmos-

pheric CO2 in a short time scale (Martin 2017).

Previous studies in Table 1 showed that the karst water pH values ranged from 6.45 to 9.7, with pH in most of
the water samples higher than 7. Considering dissolved CO2 is mainly present as HCO�

3 (Liu et al. 2018) when
the water pH varies from 6.5 to 10, the main form of DIC in karst water is HCO�

3 and the conversion of HCO�
3 to

CO2 is slow. While the HCO�
3 concentration varies in different karst water samples, with the values ranging from

12.2 to 2,633 mg/L, the HCO�
3 concentration in karst water is much higher than that in non-karst water of similar

environmental parameters (e.g. temperature and precipitation). In addition, great variations of Ca2þ and Mg2þ

concentrations were also observed. In terms of geographic locations, the concentrations of HCO�
3 , Ca

2þ, and
Mg2þ in South China were higher than those in North China, which could be attributed to the differences in
environmental parameters, such as temperature, lithology, and climate. As can be seen in Table 1, the concen-
trations of HCO�

3 , Ca
2þ, and Mg2þ in a typical karst catchment in Guangxi, China were about 10 times higher

than that in the Yellow River. Therefore, it is summarized that karst water is typically with high contents of
HCO�

3 , Ca
2þ and Mg2þ, and high pH.
2.3. C/N ratio in karst river and non-karst water

As shown in Table 2, the organic carbon (OC)/N ratio in karst water in the upstream of the Pearl River (11.8:1) is
about twice compared to that in the Pearl River estuary (5.0:1) (Liu et al. 2020). While the organic carbon can be
Table 1 | The concentrations (in mg/L) of HCO�
3 , Ca

2þ, and Mg2þ in karst water and other water types

Locations pH HCO�
3 Ca2þ Mg2þ References

Karst water

Groundwater, southwest China 7.33–7.36 190.22–335.92 45.60–71.46 12.60–35.14 Liu et al. (2007)

Reservoir water, Guizhou, China 7.88 166.53 68.90 – Liu et al. (2021)

Spring water, southwest China 7.08–7.52 184.04–273.84 62.72–93.87 0.27–2.34 Liu et al. (2004)

Reservoir water, Guizhou, China 7.25–9.18 – 24.74–74.09 5.54–19.01 Ma et al. (2021)

Karst catchment, Guangxi, China – 270.00–2,633.00 122.00–1,382.00 20.00–176.00 Sun et al. (2021)

Spring water, Guizhou, China 7.50–9.7 90.1–255.30 24.30–61.00 9.10–21.60 Chen et al. (2017)

Lijiang River Basin 6.45–8.52 21.96–201.00 5.80–53.36 0.98–8.73 Sun et al. (2019)

Guancun River, Guangxi, China – 173.90–289.04 71.14–86.04 4.81–14.37 Cheng et al. (2012)

Karst spring-fed pool, Chongqing, China – – 52.50–56.00 1.80–2.10 Jiang et al. (2013)

Groundwater, Shandong, China 7.57 263.78 158.59 26.06 Wu et al. (2021)

Groundwater, Jianghan Plain, China 6.60–7.50 439.00–748.00 85.00–140.00 20.00–43.00 Zhou et al. (2013)

Groundwater, North China Plain – 12.20–1,879.50 2.40–1,622.20 – Zhang et al.
(2013a)

Non-karst water

River water, Guangdong, China 7.73–7.95 – 37.67–131.36 6.57–276.97 Chen et al. (2019)

Yellow River, China 8.11–8.21 186.66–208.01 86–94 29.76–46.80 Zhang et al. (1995)

Hanfeng Lake, Chongqing, China 8.05–8.12 65.453–67.466 – – Zhao et al. (2021)

Mixed water

Tibetan lakes, China 7.80–10.40 ND–9,613.00 4.33–1,140.00 1.80–9,089.00 Li et al. (2016)

Ichetucknee River water, USA 7.48–8.06 2.86–2.93 1.34–1.40 0.29–0.30 Montety et al.
(2011)

ND, not detected.
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Table 2 | Organic C/N ratios reported in some world large rivers, modified based on Liu et al. (2020)

Rivers/ reservoirs DOC/N References

Karst water

Pearl River (pristine upstream) 11.8:1 Liu et al. (2020)

Longtan Reservoir, Tian’e, China 7.13:1a Cao et al. (2019)

Wulixia Reservoir, Guilin, China 1.11:1b Song et al. (2017)

Runoff in the Puding Country, China 6–9:1c Song et al. (2019)

Non-karst water

Superior Lake (Canada, Ontario) 8.13:1 Zigah et al. (2012)

Amazon River 29.1:1 Meybeck (1982)

Pearl River estuary 5:1 Liu et al. (2020)

Yangtze River 6.2:1 Wu et al. (2007)

Yellow River estuary 6.0:1 Liu et al. (2012), Zhang et al. (2013b)

Mississippi River estuary 20.4:1 Dagg et al. (2005)

Yenisei River 43.1–52.4:1 Holmes et al. (2012)

aDissolved inorganic carbon was used.
bTOC was used here.
cDissolved carbon was used.
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categorized into DOC and particulate organic carbon based on a size threshold of 0.2 μm. A previous study
showed that the DOC/N ratio in a karst reservoir in Guilin, China was 1.11:1 (Song et al. 2017), which is not
consistent with aforementioned Liu et al.’s work. Moreover, the OC/N ratio values in karst soil were slightly

lower than those in non-karst soil (Gu et al. 2018). In addition, Table 2 also shows that the DOC/N ratios in
rivers of China are much lower than those in the Mississippi River estuary and Yenisei River, probably due to
high precipitation and high organic matter (OM) inputs, indicating that the OM might be the key factor influen-

cing the DOC/N ratio in rivers as riverine OM is with high DOC/N ratio (about 30:1) (Bauer et al. 2013).
Neither the data of the DIC/N ratio in the karst or the non-karst aquatic systems are available. The DIC con-

tents in karst water are relatively higher as discussed before; therefore, it can be deduced that the total

concentrations of carbon including DIC and DOC in karst water are also higher than those in non-karst
water. As organisms translate DIC into total organic carbon (TOC) by photosynthesis, theoretically the total
carbon (TC)/N ratios in karst water should also be higher. Considering the limited number of researches available
currently, more researches are still required to figure out the differences of TC/N ratios between karst and non-

karst water.
3. TRANSFORMATION OF NITROGEN IN KARST WATER

3.1. Nitrogen emission in karst aquatic systems

As one of the most important cycles in water systems, the N cycle, including the conversion and flux of N, has
received worldwide attention in recent years. Human activities, such as intensive agriculture and rapid urbaniz-
ation, lead to excessive and repetitive N inputs, which significantly affect the natural cycle of N. In the 20th
century alone, human activities have increased the amount of N delivering to rivers and streams from 34 to

64 Tg N/yr (Beusen et al. 2016). N pollution has become one of the most concerned and prevalent environmental
problems, especially in karst areas. Karst areas are subjected to greater pressure of N pollution than other regions
because karst aquifers are particularly sensitive and vulnerable to chemical pollution from human activities due

to their developed networks of fractures, pipelines, and sinkholes (Jiang 2013).
In water systems, the two sources for N are natural and artificial activities. While biological N fixation was the

only important process in Earth’s ecosystems producing reactive N to support C fixation into energy-rich OM

(primary production) before the agricultural and industrial revolutions, human activities have been introducing
large amounts of N into the environment through municipal sewage, industrial effluent, and agriculture since the
agricultural and industrial revolutions (Wakida & Lerner 2005), especially the N fertilizer used in agriculture to

promote crop growth and increase crop yield (Wang et al. 2019a, 2019b).
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3.2. N cycle processes

In aquatic environments, N was composed of organic and inorganic N (Nie et al. 2018). The organic nitrogen is

divided into dissolved organic nitrogen (DON) and particulate organic nitrogen (PON), depending on whether it
can pass through a 0.2-μm filter (Jørgensen 2009). DON includes a variety of organic molecules and compounds,
ranging from small molecules like urea and amino acids, to peptides and proteins, while PON includes both dead
OM and living organisms that are larger than 0.2 μm (Jørgensen 2009). The inorganic nitrogen in aquatic ecosys-

tems includes dissolved N2 gas, oxidized ions such as nitrate (NO3
�), nitrite (NO2

�), ammonium ion (NH4
þ), and

ammonia gas (NH3) (Howarth 2009). The most frequently detected mineral N fractions in water are NO3
� and

NH4
þ, which are also the dominant components of N produced by human activities (Beusen et al. 2016).

In water systems, N would go through a variety of bacteria-mediated processes, mainly including nitrogen fix-
ation, mineralization, nitrification, denitrification, dissimilated nitric acid reduction to ammonium, and ammonia
oxidation (Figure 1). Most N on Earth is in the form of N2, which becomes biologically significant after being

fixed by bacteria, lightning, volcanic activity, and human activity. In aquatic environments, N fixation is
mostly carried out by heterotrophic or autotrophic bacteria and cyanobacteria. NO3

�, NO2
�, NH4

þ, and NH3

are the active N in water. Algae, rooting plants, fungi, and bacteria absorb and reduce NO3
� and NO2

� to NH4
þ

in a process known as assimilative nitrate or nitrite reduction. NH4
þ could be catalytic-oxidized by nitrifying bac-

teria to NO3
� in a process called nitrification, from which the nitrifying bacteria gain energy to fix CO2 into new

bacterial biomass. Plants, algae, and microorganisms use nitrates and ammonium to produce organic nitrogen-
containing compounds, which could be further taken up by animals through the food chain, through one of

the following processes: direct absorption, assimilation, and reduction. The organic N eaten by animals or decom-
posed by microorganisms is excreted as ammonium or as urea which is further rapidly hydrolyzed to ammonium.
In addition, NO3

� is also reduced by heterotrophic or autotrophic bacteria to NO2
�, which is further reduced to N2

by a process known as traditional denitrification or dissimilated nitrate reduction. These processes that release N
from organic N back to the environment are called nitrogen mineralization. The other N cycle processes include
denitrification based on chemosynthetic oxidation of sulfides or reduced iron (Howarth 2009), anaerobic oxi-

dation of ammonia to N2 (Anammox), dissimilatory reduction of NO3
� to NH4

þ via NO2
� (DNRA) (Medinets

et al. 2015), and autohydrogenotrophic denitrification of NO3
�/NO2

� to N2. However, the relative importance
of these newly discovered processes in water systems remains quite uncertain (Howarth 2009).
Figure 1 | The simplified N cycle in the karst water system (based on Howarth 2009). The plus sign suggests that alkaline karst
water promotes the nitrification process. Minus signs indicate that the high C/N content and alkalinity in karst water inhibit the
mineralization and denitrification processes.
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3.3. N cycle characteristics in karst area

Due to the unique hydrochemistry of karst water (such as high Ca2þ content, high pH, and high DIC concen-

trations), the N cycle characteristics in karst areas are different from those in non-karst areas. In the
perspective of the N cycle, the alkalinity and high DIC contents in karst areas can inhibit the heterotrophic deni-
trification and mineralization processes, which determine the karst aquatic environment as an N sink. During
nitrification, the oxidation of every ammonium ion produces two protons worth of acidity and makes the environ-

ment more acidic (Howarth 2009). Therefore, the alkaline environment in karst water is beneficial to neutralizing
the acid generated by nitrification and further promotes nitrification. However, the denitrification process is
opposite to nitrification. Every nitrate ion consumed during denitrification consumes one proton of acidity,

and thus, this process tends to raise the pH of the environment (Howarth 2009). Consequently, the inherent alka-
linity of karst water will inhibit the denitrification reaction. Furthermore, the high DIC/N ratios in karst water
can inhibit the gross mineralization because microbes immobilize rather than mineralize N to maintain the stoi-

chiometric ratio of DIC/N in their biomass (Xin et al. 2019).

3.4. Cycling of C and N in karst area

The cycling of C and N in aquatic environments is closely related, with coupled control of organic carbon con-
centrations through aquatic biological processes of assimilation or denitrification (Gruber & Galloway 2008;

Zeng et al. 2019). Although there are few studies on the C–N coupling cycle in karst water systems, some studies
have found that excessive nitrogen emissions from human activities lead to the C–N coupling cycle participating
in the carbonate weathering process, resulting in the increase of DIC flux in karst water systems (Raymond et al.
2008; Jiang 2013; Zhao et al. 2020). Most biological processes in water systems are C-limited processes, but this is
not the case in karst aquatic environments. As shown in Figure 2, in karst water systems, higher DIC and
increased NO3

� concentration due to the enhanced nitrification and human activities can promote the growth
of aquatic communities (Liu et al. 2018; Zeng et al. 2019). The growing amount of algae and microorganisms

in water increases the consumption of DIC and NO3
� through photosynthesis, as the conversion of DIC to OC

by photosynthesis induces the consumption of NO3
�, and therefore, reduces the NO3

� concentration (Pedersen
et al. 2013; Nõges et al. 2016; Liu et al. 2018). In addition, during this process, DIC and NO3

� are converted

to OM and O2 is released, which contrasts with the traditional knowledge that CO2 is released during carbonate
precipitation (Jiang 2013). It has been shown that in the Lijiang River water, the consumption of DIC and NO3

�

by aquatic photosynthesis was in a ratio of 9:1 (mol/mol) to produce autochthonous DOC (Zhao et al. 2021). To
sum up, the C–N cycle coupled with DIC and NO3

� promotes the generation of in-situ DOC in karst aquatic
environments, which constitutes the relatively long-term natural C and N sinks in karst water systems, as
shown in Figure 2.
Figure 2 | The characterized C–N cycle in karst water systems. Plus signs indicate that those processes are promoted in the
karst aquatic system and the minus sign implies the prohibited process.
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4. THE PROCESSES RELATED TO CARBON SINK IN KARST WATER

4.1. The global carbon budget and carbonate CO2 sink volume

Five major components in the global C budget are fossil CO2 emissions (EFOS), emissions from land-use change
(ELUC) (mainly deforestation), atmospheric CO2 (GATM), ocean CO2 sink (SOCEAN), and terrestrial CO2 sink
(SLAND). Over the last decade (2010–2019), EFOS and ELUC were 9.6+ 0.5 and 1.6+ 0.7 Pg·C/yr, respectively,

GATM was 5.1+ 0.02 Pg·C/yr, SOCEAN and SLAND were 2.5+ 0.6 and 3.4+ 0.9 Pg·C/yr, respectively, and the
imbalance budget (BIM) was �0.1 Pg·C/yr (Friedlingstein et al. 2020). The accepted values for SLAND at present
range from 1.8 to 3.4 Pg·C/yr in the global C budget (Melnikov & O’Neill 2006; Lal 2008; Friedlingstein et al.
2020). Similarly, another research indicated that SLAND was calculated at 2.6 Pg·C/yr, while CO2 sink due to
photosynthesis and CO2 emissions from plant respiration were 14.1 and 11.6 Pg·C/yr, respectively (Yuan &
Liu 2003).

A large C sink is missing from the global carbon cycle with the value of 1.7–2.5 Pg·C/yr (Cao et al. 2011). CO2

sink from carbonate might be an important component missed in previous studies; however, the volume of CO2

sink by carbonate weathering on continents varied greatly in different researches, with its volume ranging from
0.018 to 0.6 Pg·C/yr worldwide, which is about 7–36% of the missing C sink (Yuan 1997; Gaillardet et al. 1999;
Gombert 2002; Liu et al. 2010b). Liu et al. (2011) found that carbonate weathering contributed about 94% to the
atmospheric CO2 sink, while only 6% resulted from silicate weathering. More researches on CO2 absorption
experiments using more accurate calculation methods are still needed to estimate the atmospheric CO2 sink

by carbonate weathering.

4.2. Carbonate-related atmospheric CO2 sinks

Two primary processes related to global sinks of atmospheric CO2 are the transformation of CO2 to HCO�
3 in

water due to rock weathering (Li et al. 2011) and the assimilation of CO2 by photosynthesis to organic C
(Sabine et al. 2004; Zeebe & Caldeira 2008). There are three sources of HCO�

3 , including carbonate weathering
by carbonic acid, carbonic weathering by sulfuric and/or nitric acids, and silicate weathering. Carbonates can

consume more atmospheric and petrologic CO2 because of their high solubility and high dissolution rate (Liu
et al. 2010b), resulting in aquatic photosynthesis is the main process for CO2 absorption in silicate terrains.
The roles of both carbonate mineral weathering and aquatic photosynthesis, termed as coupled carbonate weath-
ering, are significant in karst areas (Liu et al. 2018). In addition, Sun et al. (2021) also observed that the average

contributions made by silicate weathering to the CO2 sink in the Lijiang River basin ranged from only 2.3 to
14.8%, which indicated that carbonate weathering was the main source of HCO�

3 in this basin although carbon-
ate rock area (3,832 km2) is smaller than silicate rock area (5,482 km2).

DIC is mainly consumed by phototrophs in aquatic ecosystems such as rivers, lakes, and the oceans (Dean &
Gorham 1998; Cassar et al. 2004; Tortell et al. 2008). During this process, DIC is transformed in the water to OC
and pCO2 is reduced, which results in the continuous uptake of atmospheric CO2 (Liu et al. 2010b). The biologi-

cal productivity of aquatic phototrophs has been found to be associated with the supply of DIC from rock
weathering. For instance, the utilization of HCO�

3 by Oocystis solitaria Wittr in karst water was 4.6-fold higher
than that in non-karst water (Liu et al. 2010a).

Previous researches concluded that the atmospheric CO2 consumed by carbonate weathering was compen-

sated by a CO2 released from marine carbonate precipitation over a relatively short time. However, this
conclusion neglected the large amount of atmospheric CO2 uptake during aquatic photosynthesis (Liu et al.
2010b). Moreover, Liu et al. (2018) also observed that the increased DIC concentration controlled by carbonate

weathering in the karst area might enhance aquatic photosynthesis, promoting the consumption of atmospheric
carbon. Therefore, the amount of CO2 absorbed by the C sink in the karst area was larger as compared to other
areas.

4.3. High carbon sink rate in carbonate area

As shown in Table 3, the range of carbon sink rate in carbonate area was 1.54–73 tC/km2/yr, while in silicate area
the range of this value was 0.02–8.0 tC/km2/yr. The annual average C sequestration flux of limestone weathering

in China was estimated to be 4.28–5.02 tC/km2/yr (Li et al. 2019). The C sinks produced by carbonate weathering
and the ‘biological C pump’ in the Li River basin were 12.17 and 2.24 tC/km2/yr, respectively (Sun et al. 2021).
The average amount of CO2 consumed by C sinks in karst basins around the world (8.5 tC/km2/yr) was about
three times higher than that in non-karst basins (2.86 tC/km2/yr). In karst water, the C sink is enhanced by N
a.silverchair.com/bgs/article-pdf/3/1/201/980332/bgs0030201.pdf



Table 3 | The carbon sink rates (in tC/km2/yr) in the different basins

C sink rate Silicate weathering Carbonate weathering References

Lijiang river, China 14.41 12.17 Sun et al. (2021)

Guancun Underground Stream, China 73.00 Pu et al. (2017)

Guancun Underground Stream, China 12.34 Guo et al. (2011)

Mumei Underground Stream, China 31.44 Guo et al. (2011)

Banzhai Underground Stream, China 11.80 Guo et al. (2011)

Pearl River basin, China 11.68 Cao et al. (2011)

China (2000–2014) 4.28 Li et al. (2019)

Taiwan, China 27.15 Li et al. (2019)

Karst zone, Southeastern China 8.56 Jiang et al. (2011)

Karst zone, North China 1.54 Jiang et al. (2011)

Karst zone, Qinghai-Tibetan plateau, China 2.20 Jiang et al. (2011)

Pearl River, China 7.40 Qin et al. (2015)

Pearl River basin, China 35.98 Wei (2003)

Yangtze River, China 11.27 Zhang et al. (2016)

Yangtze River, China 10.07 Li et al. (2019)

Yellow River, China 5.74 Li & Zhang (2003)

Yellow River, China 2.65 Li et al. (2019)

Xijiang River, China 11.06 Yang et al. (2020)

Russia 0.08 Zhang et al. (2021)

Canada 0.18 Zhang et al. (2021)

United States 0.49 Zhang et al. (2021)

Round the world 0.02–8.00 Gaillardet et al. (1999)
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translation, as the concentration of dissolved CO2 was decreased dramatically (about 75%) due to the increase of
NO3

� in the Yangtze River (Wang et al. 2007). Therefore, in the karst basin, the transformation of C and N by

aquatic phototrophs was coupled.
5. CONCLUSIONS AND OUTLOOKS

Carbonate bedrock regions represent 14% of the continental surface of the Earth and provide drinking water
resources for about 25% of the global population. C sink in karst water plays an important role in the global
C cycle due to the CO2 consumption during carbonate mineral weathering. This review highlights the consump-
tion of CO2 during carbonate weathering and the relevance of the N and C cycles in karst regions. Existing

concentrations of HCO�
3 , Ca

2þ, Mg2þ, and C/N ratios are presented, followed by a review of previous studies.
Here we show that,

1. Karst aquatic systems are characterized by high contents of HCO�
3 , Ca

2þ, Mg2þ, high pH, and high C/N ratios.
2. The cycling of C and N in karst aquatic environments is closely related and the high content of DIC in karst

systems will increase the nitrogen sink. Also, the growth of aquatic communities was promoted by higher con-

centration of DIC and the increase of NO3
� due to the enhanced nitrification and human activities.

3. The budget of CO2 sink from carbonate ranged from 0.018 to 0.6 Pg·C/yr (about 7–36% of the missing carbon
sink), which indicated that carbonate weathering was an important component neglected in previous studies.

4. The range of C sink rates in carbonate area was 1.54–73.00 tC/km2/yr, while in silicate area the range of this
value was 0.02–8.00 tC/km2/yr.

The N input in karst areas worldwide would increase due to continuous population growth, industrial activities
expansion, and lifestyle improvement. This necessitates the collection of sufficient information about the C and N
sinks in karst systems to provide reliable projections of C and N balances. As few studies are available specifically

focusing on the impact of karst characteristics on the C sink as well as the N cycle, more field observations
a.silverchair.com/bgs/article-pdf/3/1/201/980332/bgs0030201.pdf
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targeting the relationships between C and N cycles in karst aquatic systems are urgently needed to figure out the
mechanism of N sink in karst water with high abundance of DIC.
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