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ABSTRACT

Constructed wetlands are a type of green infrastructure commonly used for urban stormwater treatment. Previous studies have

shown that the various design characteristics have an influence on the outflow heavy metal concentrations. In this study, we

develop a Bayesian linear mixed model (BLMM) and a Bayesian linear regression model (BLRM) to predict the outflow concen-

trations of heavy metals (Cd, Cu, Pb and Zn) using an inflow concentration (Cin) and five design variables, namely media type,

constructed wetland type (CWT), hydraulic retention time, presence of a sedimentation pond (SedP) and wetland-to-catchment

area ratio (Ratio). The results show that the BLMM had much better performance, with the mean Nash–Sutcliffe efficiency

between 0.51 (Pb) and 0.75 (Cu) in calibration and between 0.28 (Pb) and 0.71 (Zn) in validation. The inflow concentration

was found to have significant impacts on the outflow concentration of all heavy metals, while the impacts of other variables

on the wetland performance varied across metals, e.g., CWT and SedP showed a positive correlation to Cd and Cu, whereas

media and Ratio were negatively correlated with Pb and Zn. Results also show that the 100-fold calibration and validation

was superior in identifying the key influential factors.
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HIGHLIGHTS

• Data-driven models were developed to predict the heavy metal performance in constructed wetlands.

• The impact of variables was assessed using posterior distributions of the regression coefficients.

• The inflow concentrations had a significant positive impact on outflow concentrations for all metals.

• The most influential variables are varied for metals.

• Multiple-fold cross-validation is needed to robustly identify the key variables.
1. INTRODUCTION

Urban stormwater is a significant factor contributing to the declining health of waterways (McGrane 2016).
Heavy metals are types of harmful contaminants of concern in urban stormwater due to their toxicity to aquatic

species (Kivaisi 2001). As a result of anthropogenic activities, e.g., usage of automobile and metallic structures,
heavy metals accumulate on impervious surfaces and then can be conveyed by urban stormwater into receiving
waterways (Sakson et al. 2018). Therefore, stormwater management approaches, such as water-sensitive urban

design systems, also known as green infrastructure (GI), sustainable urban drainage systems or low-impact devel-
opment, are being used in urban areas as an integrated solution to treat urban stormwater before it is released into
receiving waterways (Roy et al. 2008; Li et al. 2020; Winston et al. 2020).

Constructed wetlands (also known as artificial wetlands) are among the most popular solutions for urban
stormwater treatment (Barton & Argue 2007). Constructed wetlands predominantly consist of a sedimentation
basin and a macrophyte zone containing media and vegetation. As urban stormwater flows through the sedimen-

tation basin and the macrophyte zones, pollutants are removed through physical (e.g., sedimentation and
filtration), chemical and biological (e.g., root zone uptake and microbial degradation) processes (Vymazal
2005; Midhun et al. 2016). Previous studies have demonstrated the high removal rates of heavy metals from
urban stormwater, with average removal rates of 57, 65, 65 and 52% for Cd, Cu, Pb and Zn, respectively
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(Birch et al. 2004; Lucas et al. 2015). However, the performance can vary significantly depending on the wetland
design characteristics and operational conditions (Birch et al. 2004; Lucas et al. 2015).

There are three types of constructed wetlands: Horizontal Free-Surface Flow constructed wetland (HFSF),

Horizontal Subsurface Flow constructed wetland (HSSF) and Vertical Subsurface Flow constructed wetland
(VSSF) (Lucas et al. 2015). Owing to a number of different structural designs within each type, it is not clear
which wetland type should be the preferred choice for heavy metal removal (Khan et al. 2009; Rahman et al.
2020). Generally, in constructed wetlands, it was found that the presence or absence of a sedimentation pond

impacts the removal of particulate heavy metals, as the sedimentation pond provides an opportunity for the par-
ticulate metals to settle out of suspension (DAFF 2021). Furthermore, the design size of constructed wetlands, i.e.,
the ratio of system size to catchment impervious area, is a crucial design factor in a number of wetland guidelines

across the world. The recommended value for this ratio in the USA is.2% (US EPA 2000) and is 1–5% in the UK
(Ellis et al. 2003). Lucas et al. (2015) suggested that the ratio values lower than these recommended values result
in lower metal removal efficiency. Hydraulic retention time (HRT) has varied impacts on the system perform-

ance. The recommended HRT is usually 24 h (Halcrow/UPRC 2000), and when combined sewer overflows
are present, it cannot exceed 48 h, as this might result in clogging, which reduces the pollutant removal perform-
ance of the wetland (Uhl & Dittmer 2005). Media rich in organic matter with higher adsorption capacity are

expected to have higher heavy metal removal efficiency (Singh & Chakraborty 2020). The ability of plants to
uptake heavy metals is variable depending on the plant and the metal (Adams et al. 2013). For instance, the
Cu removal rate can vary from 48.28% removal (Phragmites australis) to 99.10% (Iris pseudacorus) removal
in systems with different vegetations (Wang et al. 2014).

Similarly, operational conditions can also influence the system performance. Yadav et al. (2010) found that
higher inflow concentrations often lead to higher outflow concentrations due to the inability of the wetland to
treat the high metal concentrations. Previous studies have found that other operational conditions (e.g., rainfall

depth, infiltration rate, antecedent dry period length and evapotranspiration) generally influence the pollutant
removal performance of GI (e.g., biofilters; Zhang et al. 2021). The processes, however, are quite complicated
as they are also subject to various environmental conditions (e.g., pH, redox and temperature) (Schmitt et al.
2015; Walaszek et al. 2018).

It is clear that there is a complex interaction between several key designs and operational elements used in con-
structed wetlands that influence their heavy metal (and other pollutants) removal performance. This makes the
problem of wetland design optimisation challenging for standard mesocosm studies, since they cannot highlight

which elements have the greatest effect on effluent water quality. Computational modelling is an approach that
can simulate the system performance based on an understanding of the underlying pollutant removal processes of
constructed wetlands. Currently, there is a lack of models that can accurately predict heavy metal removal pro-

cesses in constructed wetlands. The Stormwater Water Management Model is an example of a commonly used
model which represents constructed wetlands and contaminants as blocks with the conceptual model (Kincanon
& McAnally 2004). Tomenko et al. (2007) have reviewed other less complex models and have identified disad-

vantages for them, e.g., the first-order decay models usually oversimplified the interaction of constructed wetland
modelling, whereas the Monod-type models (i.e., an extension of first-order decay model) could not always assess
the parameters directly.

More recently, data-driven models have been used to investigate and predict the pollutant removal perform-
ance of GI (Fang et al. 2021; Nguyen et al. 2021; Zhang et al. 2021). The strength of the data-driven model is
that it can establish the relationships between removal efficiency and system characteristics with a limited under-
standing of the underlying removal processes and without quantifying the parameters that define these removal

processes. For example, both Tomenko et al. (2007) and Nguyen et al. (2022) have used data-driven models –

artificial neural network (ANN) to predict biochemical oxygen demand (BOD5) effluent concentration in con-
structed wetlands with high accuracy (i.e., mean R2¼ 0.997 and 0.925 for the proposed ANN models in the

two studies). A regression model has been conducted to analyse the trends for TP (total phosphorus), TN
(total nitrogen), BOD5 and TSS (total suspended solids) removal performance in constructed wetlands and
design factors with R2 from 0.49 to 0.62 (Son et al. 2010). The Bayesian modelling approaches have also been

used to understand the key design characteristics and elements that impact the treatment performance of GI
(Liu et al. 2017), including constructed wetlands (e.g., Nguyen et al. 2018). Main et al. (2017) have applied the
Bayesian method to predict the neonicotinoid concentrations in constructed wetlands. The Bayesian approaches
a.silverchair.com/bgs/article-pdf/3/1/163/977165/bgs0030163.pdf
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are commonly used for data-driven modelling due to their computational efficiency, flexibility of analysis data
type, ability to clearly quantify parameter uncertainty and ability to assign a non-informative prior distribution
for parameters that we have little a priori information and data about (Kazembe et al. 2008; Liu et al. 2017). How-

ever, models that predict heavy metal removal in constructed wetlands are still lacking. In addition, we also lack
an understanding of which design characteristics and operational conditions need to be optimised to enhance the
heavy metal treatment performance in constructed wetlands.

This study aims to develop the data-driven models to predict the heavy metal removal performance of con-

structed wetlands and investigate wetlands’ key design characteristics and operational condition. The data-
driven models were developed using a Bayesian modelling approach to create a detailed understanding of the
relationship between the outlet concentration of each metal and wetland characteristics. They were then

tested using a systematic approach to assess the model performance. Using the developed models, we also inves-
tigated the impact of constructed wetland design characteristics and inflow concentrations on the heavy metal
outlet concentration.
2. METHODOLOGY

2.1. Data collection

A systematic literature review was performed to collect data on constructed wetlands’ heavy metal treatment per-
formance in field-scale and pilot-scale systems. This systematic review was conducted following the method
proposed by Pickering & Byrne (2014). A combination of keywords – ‘metals’, ‘urban stormwater’ and ‘con-

structed wetland’ was used to search for the relevant literature in ScienceDirect, Web of Science and Google
scholar. The initial screening resulted in 207 papers (on 21 May 2021), for which the main body, appendixes
and other linked sources were reviewed. Based on the literature review, five design variables (media type, con-

structed wetland type (CWT), HRT, presence of a sedimentation pond (SedP) and wetland-to-catchment area
ratio (Ratio)) and inflow and outflow concentrations have been selected as input variables for this study
(Table 1). It is noted that although the type of plants could influence the performance, it was not included as
different studies often used similar plants and it was difficult to differentiate between their treatment performance

levels. From the initial screening, a total of 12 papers (Supplementary Material, Table S-1) passed the pre-
designed requirements, i.e., the paper must have all of the required data/variables as shown in Table 1. In
cases when the Ratio was missing, it was calculated manually using the catchment area, imperviousness and

the constructed wetland surface area. In cases when the Cin was missing, the Cout and removal efficiency were
used to estimate the Cin. Attempts were made to collect the raw data (i.e., the data collected from each event),
but there were cases that the paper only reported mean values. These mean values were still included to

gather more data points for the models. Individually, 47, 67, 62 and 75 datasets (that included all seven
Table 1 | Summary of selected variables

Variable
name Unit Data type Description

Design
variables

Ratio – Numerical The ratio of constructed wetland surface area to the contributing
catchment impervious area

SedP – Categorical Presence of sedimentation pond: ‘1’ for presence, ‘0’ for absence

Media – Categorical Type of media: ‘0’ for soil, gravel and sand, ‘1’ for the presence of
other materialsa

HTR Hours
(h)

Numerical Hydraulic retention time: the average time the stormwater remains in
the system

CWT – Categorical Constructed wetland type: ‘0’ for HFSF, ‘1’ for HSSF, VSSF or
Hybridb

Other Cin μg/L Numerical Inflow concentrations

Parameters Cout μg/L Numerical Outlet concentrations

aSoil, gravel and sand were the most commonly used materials for constructed wetland media; other materials mean that the commonly used materials were mixed

with other materials including the volcanic gravel, pumice, quartz stone, organic materials and wood chips.
bHFSF, Horizontal Free-Surface Flow constructed wetland; HSSF, Horizontal Subsurface Flow constructed wetland; VSSF, Vertical Subsurface Flow constructed

wetland; Hybrid, two or more types of constructed wetlands used.

a.silverchair.com/bgs/article-pdf/3/1/163/977165/bgs0030163.pdf



Blue-Green Systems Vol 3 No 1, 166

Downloaded from http://iw
by guest
on 25 April 2024
parameters) were collected for Cd, Cu, Pb and Zn, respectively (statistical summary of the data is presented in
Supplementary Material, Table S-2).

2.2. Data pre-processing

All categorical data are organised into two groups. SedP was classified into yes/no categories (Yes¼ 1/No¼ 0).
For media types, ‘0’ was assigned to media types made of soil, sand, gravel or the combination of those materials
which are most commonly used (Rahman et al. 2020), ‘1’ was given to media types containing organic matter,

volcanic gravel, pumice, quartz stone and/or wood chips, which have been reported to influence the system per-
formance (Marchand et al. 2010; Lucas et al. 2015). When considering the effect of CWT, due to the limited water
filtration through the soil (Parde et al. 2021) in the HFSF, it was regarded as an individual category (assigned as

‘0’), whereas HSSF, VSSF and hybrid constructed wetland were assigned as ‘1’.
Most collected data did not follow the normal distribution. Thus, we transformed the data using the Box–Cox

transformation to increase the symmetry of the datasets. This was followed by z-score standardisation to make the
data dimensionless. This approach was also used by other similar studies for data pre-treatment (e.g., Liu

et al. 2017).

2.3. Model structure and implementation (Bayesian model approach)

In this study, we assume that each heavy metal outflow concentration in the ith site, Cout,i, follows a normal dis-
tribution, with mean μi and variance σ2 (Equation (1)):

P(Cout,i j mi, s
2) � N(mi, s

2) (1)

σ2 represents within-site variation, which includes the measurements’ error and variability in concentration levels
within the site. The mean concentration μi is modelled using the following two different approaches:

1. BLRM:

mi ¼ aþ P6

n¼1
bn � characteristicsn(i) (2)

where μi is a linear function of different variables (including the five design variables, and Cin as shown in
Table 1). a is the regression intercept, and bn is the regression parameter (slope) for the nth variable.

2. BLMM:

mi ¼ (aþ sitei)þ
P6

n¼1
bn � characteristic sn(i) (3)

P(site j j 0, s2
a) � N(0, s2

a)

where j ¼ 1, 2, . . . , 12

In the BLMMmodel, an additional sitej parameter was introduced to account for the variability across different
sites, and it was assumed to follow normal distribution with mean 0 and variance σa

2. An extra data column –

‘site’ – was then added to the dataset in order to implement the extra variable ‘sitej’, and 1–12 were assigned
for 12 individual sites (i.e., 12 individual papers). Thus, disparate linear regression lines were produced for differ-

ent sites with individual intercepts. The model can potentially inform us that whether accounting for site
variability is needed.

For both models, a was the regression intercept. The magnitude of the regression coefficients (i.e., βn) indicated

the importance of influential variables. The four-model parameters (α, βn, σ
2, s2

a) have been assumed independent
to each other. Regarding the prior distributions in previous studies, non-informative uniform priors were assigned
to σ2, s2

a as no negative value should be assigned to standard deviations; non-informative normal distributions

were assigned to α, βn for numerical data (Liu et al. 2017). Our preliminary testing showed that the models
were not able to converge when using binomial distributions for the regression coefficients of categorical vari-
ables; therefore, a normal distribution was still assigned to the categorical data in this study. The same

approach (i.e., using normal distribution for the regression coefficients of categorical variables) was also
a.silverchair.com/bgs/article-pdf/3/1/163/977165/bgs0030163.pdf
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implemented by the other previous studies (Liao et al. 2019).

a � N(0, 0:01); bn � N(0, 0:01);

s � Uniform(0, 100); sa � Uniform(0, 100) (4)

2.4. Model implementation

The samples from posterior probability distributions were obtained using the Markov Chain Monte Carlo with
the Gibbs sampling. The ‘JAGs’ package was used in the R environment. The model was simulated with four

chains and 50,000 iterations. The first 5,000 iterations were abandoned as a ‘warm-up’ period to allow the con-
vergence of the Markov chain (Rhat value of approximately 1). To reduce the effect of auto-correlation, only every
second iteration was adopted when estimating the posterior distributions.

2.5. Model testing and application

2.5.1. N-fold calibration and validation

The model was tested by the N-fold calibration and validation approach, which is a standard method to observe

the robustness of model performance (Zhang et al. 2021). In this study, 100-fold calibration and validation (with a
70–30 split of data randomly for calibration and validation) was used, following the suggestions given in Fang
et al. (2021) when the model is applied to the highly variable data collected from various literature works.
Model fit was assessed using the Nash–Sutcliffe efficiency (NSE) (i.e., a potentially reliable statistic that has

been widely used) (Nash & Sutcliffe 1970). A deviance information criterion (DIC), a Bayesian criterion for
model comparison that is tried to find a balance between model complexity and data fitness (Spiegelhalter
et al. 2002), was also estimated.

NSE ¼

Pn

i¼1
(OBSi � PREi)

2

Pn

i¼1
(OBSi � PREi)

2
(5)

where OBS is the observation, PRE is the prediction and n is the number of data points.

2.5.2. Impact of design characteristics and operational condition on the heavy metal removal performance

The posterior distribution of the regression coefficients was used to assess the impact of the independent variables
on the performance of constructed wetlands in removing heavy metals (in terms of Cout). This was done using the

following two approaches: (i) using the full dataset to have an overall view of the impact and (ii) using the 100-
fold calibration and validation results, to investigate the variability of the impacts, i.e., the posterior distribution
from each fold was generated to see whether the impact/distribution varied across multiple runs. This was done
to investigate whether the impact of the variables (evaluated using the posterior distribution of the regression

coefficients) could be done just on the full dataset, or should be through multiple-fold calibration and validation.

3. RESULTS AND DISCUSSION

3.1. Model performance

The results from the 100-fold calibration and validation of the two models are presented in Figure 1, and the NSE

and DIC values are summarised in Table 2. Based on the calibration, the BLMM was found to have better per-
formance in simulating Cout of all heavy metals, i.e., Cd (mean NSE+ standard deviations¼ 0.74+ 0.06), Cu
(0.75+ 0.06), Pb (0.51+ 0.15) and Zn (0.74+ 0.05) (Table 2). This is on average around 61% higher than the

BLRM. When validating the models, we had lower NSEs, especially for the BLRM (Figure 1). For Pb, the
mean NSE for the BLMM and the BLRM dropped to 0.28 and �2.24, respectively, and the standard deviation
increased to+ 0.45 (three times larger) and+ 4.56 (45.6 times larger), respectively, when compared to cali-

bration (Table 2). Similarly, poorer validation of data-driven models using the literature data was observed
when predicting heavy metal outflow concentrations by biofilters (Fang et al. 2021). However, the validation
of Zn was more satisfactory using the BLMM, with a minor drop for mean and an increase in standard deviation

observed (i.e., NSEvalidation¼ 0.71+ 0.08). Similarly, a larger drop in mean NSEvalidation of Zn was observed for
a.silverchair.com/bgs/article-pdf/3/1/163/977165/bgs0030163.pdf



Figure 1 | Box plots of NSE values generated by the 100-fold calibration and validation using the BLMM and the BLRM. Small
circles stand for outliers and the black bold lines stand for the median NSE values. The interquartile ranges from 25th to 75th
percentile values.

Table 2 | Summary of the mean and standard deviations for both the BLMM and the BLRM for NSE and DIC values based on the
100-fold calibration and validation

Metal Model

NSE DIC

Calibration Validation Calibration Validation

Cd BLMM 0.74+ 0.06 0.70+ 0.13 56.3+ 8.8 23.5+ 8.6
BLRM 0.77+ 0.06 0.52+ 0.76 60.1+ 7.8 29.8+ 38.1

Cu BLMM 0.75+ 0.06 0.60+ 0.13 88.9+ 14.2 40.3+ 10.8
BLRM 0.45+ 0.05 �2.46+ 1.89 113.3+ 6.3 120.5+ 36.5

Pb BLMM 0.51+ 0.15 0.28+ 0.45 114.2+ 26.5 45.7+ 47.4
BLRM 0.23+ 0.10 �2.24+ 4.56 123.6+ 10.3 78.4+ 43.8

Zn BLMM 0.74+ 0.05 0.71+ 0.08 100.5+ 12.7 39.6+ 9.0
BLRM 0.49+ 0.08 �0.09+ 0.73 122.2+ 8.7 63.2+ 32.4
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the BLRM (i.e., dropped 0.58), but it was much smaller than the drop produced by Pb. This further confirms the
necessity of using the multiple-fold calibration and validation to ensure the robustness of the models.

Overall, the best fits were found for Cd, Cu and Zn for the BLMM, with the mean NSEvalidation values of 0.70,

0.60 and 0.71, respectively. The ranges of NSE values were also small and all positive, with only a few outliers
observed. The BLRM did not perform well for all heavy metals, especially for Cu, Pb and Zn, which had negative
mean NSE values with high variability (Figure 1). Previous studies have also reported the variability in model per-

formance across different pollutants when using numerical modelling approaches to assess constructed wetlands
(Dharmasena et al. 2021), e.g., the values of R2 for TSS, TN and TP were 0.434, 0.124 and 0.490, respectively.

The predictive errors, represented by the DIC, further proved that the BLMM was better than the BLRM in

terms of model complexity and model fitness (maximum mean DIC for the BLMM and the BLRM¼ 114.21
a.silverchair.com/bgs/article-pdf/3/1/163/977165/bgs0030163.pdf
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and 123.59, respectively). In addition to that, the prediction accuracy of individual heavy metal outflow concen-
tration followed the same result from the NSE comparison, whereby Pb had the worst performance for both
models (i.e., maximum mean DIC). The better performance of the BLMM indicates that more variabilities

were produced between different sites, and our proposed intercept adjustment factor (i.e., sitej) successfully coun-
tered part of caused variabilities. Thus, the BLMM was used to explore the impact of variables on the wetland
performance in the next section.

3.2. Impact of variables on the wetland performance

Figure 2 presents the posterior distributions of regression coefficients generated from the calibration of the full
dataset. Specifically, the posterior distribution of regression coefficients of inflow concentration (Cin) showed

that the Cin had a positive impact on the outlet concentration (Cout) with a small variance, i.e., the mean and stan-
dard deviation values of regression coefficients for Cd, Cu, Pb and Zn are 0.41 (+ 0.12), 0.37 (+ 0.09), 0.47 (+
0.20) and 0.15 (+ 0.08), respectively. These findings have a good agreement with a previous study by Yadav et al.
(2010) who found out that the number of metal ions increased at higher Cin. Studies on stormwater bioretention

systems (which function very similar to VSSF) also found that the higher Cin of heavy metals can lead to increased
Cout (Fang et al. 2021).

The impact of the SedP on the system performance was highly variable, demonstrated by the largest 95% cred-

ible intervals (compared to all other variables), spanning across the zero line of ‘no effect’ (i.e., the vertical dashed
line in Figure 2). The exception was for Cu, where a pure positive impact was found (mean+ standard deviations
Figure 2 | Posterior distributions of regression coefficient plots for (a) Cd, (b) Cu, (c) Pb and (d) Zn – results from the calibration
on the full dataset. Short thick lines are 50% posterior credible intervals, the thin lines indicate 95% credible intervals and the
dots represent the mean values.
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of coefficient¼ 1.8+ 0.75). This shows that the SedP could increase the outlet concentration of Cu. Previous
studies show mixed findings regarding the partitioning of Cu in dissolved and particulate form in stormwater,
e.g., Maniquiz-Redillas & Kim (2014) observed a higher fraction of Cu in dissolved form, while Huber et al.
(2016) found more Cu presented in particulate form. Thus, it is possible that Cu can transform between two
forms, and accumulated Cu in the sedimentation pond can be resuspended during flow events and cause it to
leach out of the system, e.g., a significant drop of Cu removal efficiency can be observed in the largest rainfall
(from 56–86% to 21%) (Birch et al. 2004).

The posterior distributions of the regression coefficients of HRT show very little impact on the heavy metal
outlet concentrations, as the mean regression coefficient values were very close to zero (i.e., �0.30 for Cd,
�0.06 for Cu, �0.09 for Pb and 0.10 for Zn), and the credible intervals are across the zero line of ‘no effect’.

The literature also reported mixed impacts of HRT on the performance of constructed wetlands. Chen (2009)
and Baum et al. (2021) have shown that, in general, a higher HRT can lead to improved system performance
(i.e., lower outlet concentrations). However, very long HRT (over 48 h) might lead to poor performance gradually

due to clogging in subsurface wetlands. Negative removal efficiency has been observed for heavy metals in satu-
rated or blocked systems (i.e., �97 to 97% for Cu) (Lucas et al. 2015; Upadhyay et al. 2016). In this study, the
HRT varied considerably in the raw data for all metals (i.e., min–max was 0.4–127.2 h), which could be the poss-

ible cause for having negligible effects.
The impact of the Ratio on the heavy metal outlet concentrations was very small, with low values of mean

regression coefficients, which also crossed the zero line of ‘no effect’. The exception was found for Zn, where
a significant negative impact was observed (mean+ standard deviations of coefficient¼ –0.32+ 0.19; Figure 2).

This indicates that a larger system size can lead to lower outflow concentrations. Commonly, the Ratio should be
designed, so that the constructed wetland can retain a certain amount of runoff and pollution reduction (Maillard
et al. 2011; Lucas et al. 2015). In this study, the Ratio values did not vary significantly, i.e., the mean+ standard

deviations values for the Ratio of Cd, Cu, Pb and Zn were 2+ 0.6%, 2+ 0.8%, 2+ 0.7% and 2+ 0.7%. Carleton
et al. (2001) and Lucas et al. (2015) have explored in their study that the larger Ratio could increase the removal
efficiencies for all four heavy metals; however, oversized systems may experience prolonged dry conditions that

will harm the system health.
It was found that the subsurface flow and hybrid wetlands had better Cu and Zn removal, demonstrated by the

significant negative impacts of CWT on their removal, i.e., the 50% credible intervals are all negative side
(Figure 2). Previous studies also found that the subsurface flow wetlands or hybrid systems generally show

better system performance in removing heavy metals (e.g., Marchand et al. 2010; Parde et al. 2021), probably
due to an enhanced adsorption of heavy metals as the water flows through the media. However, the opposite
results were observed for Cd, where the HFSF appeared to be better, demonstrated by the significant positive

impacts (i.e., mean+ standard deviations of coefficient¼ 1.77+ 0.96; Figure 2). No previous studies have
directly indicated the better performance of HFSF for Cd removal over other wetland types; however, many
studies have found that Cd achieved the highest removal compared with other heavy metals (i.e., 91.9 and

99.6%) in HFSF wetlands (Kanagy et al. 2008; Khan et al. 2009). In terms of Pb removal, CWT had no clear
impact, as the mean regression coefficient value was very close to zero (0.06+ 0.44; Figure 2), and the regression
lines crossed the zero line of ‘no effect’. This is probably due to the fact that sedimentation is the dominant pro-

cess for particulate heavy metal removal, and Pb is mostly in particulate form (i.e., Pb had a higher particulate
fraction than Cu and Zn) (Mosley & Peake 2001; Liu et al. 2007). Thus, Pb can be readily removed irrespective
of water filtration through soil (e.g., Aswad et al. 2020).

The media type has the strongest negative impact on the Pb outlet concentration (�1.05+ 0.63), while no

impacts were found for the Cd (0.04+ 0.52), Cu (�0.08+ 0.40) and Zn (�0.10+ 0.46) (the regression lines
crossed the zero line of ‘no effect’; Figure 2). This shows that adding other materials (e.g., the volcanic gravel,
pumice, quartz stone, organic materials and wood chips) could lead to better performance in removing Pb.

Studies have also shown that adding organic materials to soil could be a beneficial approach in enhancing
heavy metal treatment, by cation exchange, complexation and precipitation (Yadav et al. 2012; Saeed et al.
2021). Specifically, Vymazal et al. (2010) summarised the reasons as follows: Pb may bind strongly to organic

matters, carbonate is an effective sink for Pb and Pb is preferred to be complexed to organic matters in either
rhizosphere solutions or on the root surface.
a.silverchair.com/bgs/article-pdf/3/1/163/977165/bgs0030163.pdf



Figure 3 | Change in the distributions of regression coefficients for a specific variable and heavy metal across the 100-fold
calibration and validation. (a) Regression coefficient of Cin for Cu, (b) Regression coefficient of SedP for Cd, (c) Regression
coefficient of Ratio for Zn, and (d) Regression coefficient of media for Pb.
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3.3. Variability in the impacts of variables: results from the 100-fold calibration and validation

The distributions of selected variables for specific heavy metals across the 100-fold calibration and validation are

presented in Figure 3. The full distributions of regression coefficients of inflow concentrations (Cin) for Cu are all
on the positive side, i.e., regression coefficient means and 95% credible intervals were solely positive, except for
two-fold that had negligible negative values at 5% confident intervals (i.e., �0.01 and �0.04) (Figure 3(a)). Similar

results were found for other metals (shown in Figures S-2–S-5 in the Supplementary Material). This has good
agreement with the results further generated by the model using the full dataset (as in the previous section,
which used the full dataset). A good agreement was also found on the impact of sedimentation ponds on the

Cd removal between two approaches, i.e., using the full dataset/100 – fold calibration and validation – both show-
ing no effects (Figure 3(b)).

Figure 3(c) shows that all the mean values of the regression coefficient of Ratio for Zn were negative (�0.74 to

�0.03); however, in 17 of the 100 calibration and validation cases, the 50% credible intervals of posterior distri-
bution of the coefficients crossed the zero line of ‘no effect’. This is inconsistent with the findings from the full
dataset simulation, which show pure significant negative effects (mean regression coefficient¼�0.32+ 0.19;
Figure 2). This shows that the posterior distribution of the regression coefficients of Ratio may change from

pure negative values to also cover the positive ranges. Similarly, inconsistent findings were observed between
the full dataset approach and the 100-fold approach for the impact of media on Pb removal in constructed wet-
lands (Figure 3(d)). In these cases, checking the impact of variables through the N-fold calibration and validation

approach is preferable.
4. CONCLUSIONS

This study was performed to investigate the possibility of using the BLMM and the BLRM to explore the relation-
ships between independent variables (i.e., design variables and inflow concentration) and outlet concentrations of

four heavy metals (i.e., Cd, Cu, Pb and Zn) in a constructed wetland. Better performance was found by the BLMM
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than the BLRM, indicating the need to consider the variance generated from different sites. The assessment of the
posterior distribution of regression coefficients shows that Cin has a consistently positive impact on Cout for all
heavy metals, while the impacts of design variables (e.g., HRT, Ratio, CWT, SedP and media type) varied for

different heavy metals, i.e., CWT and SedP showed a positive correlation to Cd and Cu, whereas media and
Ratio were negatively correlated with Pb and Zn. Results also show that the 100-fold calibration and validation
was superior in identifying the key influential factors.

It is expected that the model developed in this study could be used by practitioners to design future wetlands

and/or understand how existing wetlands are working in terms of heavy metal removal. In addition, the under-
standing of the key design characteristics and operational conditions that influence the heavy metal removal will
help guide practitioners and stormwater managers on the optimal design of constructed wetlands for pollutant

removal performance.
The results of this study, however, should be regarded as preliminary and future work should be done to further

validate the findings using more data collected from the literature or through field monitoring. Additionally, the

extension of the methodology might be achieved by introducing the Bayesian hierarchical model to explore the
influences where the data for operational conditions are available (e.g., rainfall depth and antecedent dry weather
period) due to the fact that the heavy metal removal mechanisms could be affected by operational conditions as

well.
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