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Abstract

Past studies have shown that phosphate recovery in the form of struvite is relatively a simple process, which can
be achieved by adding a magnesium source in stored urine. However, struvite recovery process at a decentra-
lised level becomes uneconomical due to high input cost of magnesium salts and operational cost. While use
of cheaper alternative magnesium sources such as bittern, low-grade MgO and wood ash could lead to partial
cost reduction, it is also important to reduce the overall operational costs to make struvite recovery process
economically viable and sustainable. In this study, a continuous flow reactor was developed for low-cost struvite
recovery from stored urine at decentralised community scale operations. Our study revealed that over 81.2% of
phosphate present in urine can be recovered in the form of struvite. Comparison of results from stirred and
unstirred experiments shows that higher recovery efficiency is obtained due to minimal loss of fines. Operation
and financial assessment of the process shows that struvite recovery can be profitable due to continuous oper-
ation of the reactor requiring minimal process control and manpower requirement.
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Highlights

• Simple and low cost decentralised struvite reactors are not available.

• Use of low operating cost and continuous flow reactor can help in reducing the operational costs significantly.
INTRODUCTION

Source separation of urine can effectively reduce nutrient loads in wastewater streams. Around 80%
of the total nitrogen (N), 70% of the potassium (K) and up to 50% of the total phosphate (P) present in
the municipal wastewater originates from urine, which forms less than 1% of the volume total volume
of wastewater (Larsen & Gujer 1996). Therefore, urine separation, while increasing efficiency of exist-
ing treatment plants, can reduce the overall resource consumption (Wilsenach & van Loosdrecht
2003). Struvite (magnesium ammonium phosphate hexahydrate (MAP), MgNH4PO4·6H2O) is one
of the important compounds which can be recovered from human urine and used as fertiliser. It is
also known for the devastating role it plays in the wastewater treatment plants causing blockages
and scaling of pipelines and mechanical components. Struvite can be precipitated by simple addition
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of a magnesium source such as magnesium chloride (MgCl2), magnesium sulfate (MgSO4) or mag-
nesium oxide (periclase, MgO) in source separated urine (Demirer et al. 2005). The chemical
composition of source-separated hydroloysed urine with a pH value of 8–9 is optimal for recovery
of struvite (Udert et al. 2003). Hydrolysed urine is the state in which the urea in human urine is con-
verted into ammonia and carbonate, leading to volatilisation ammonia present in urine. However, as
the cost of industrially produced magnesium salts are quite high, use of magnesium-containing waste
products such as bittern (Etter et al. 2011), low-grade MgO (Chimenos et al. 2003) or wood ash
(Sakthivel et al. 2012) are being explored for recovery of struvite from human urine and other
waste water streams.
Although the process of struvite precipitation from source separated urine is relatively simple (Tilley

et al. 2009), transportation cost of urine renders the process unviable at a central level (Etter et al.
2011). Therefore, decentralised struvite production at a community or institutional scale helps in
offsetting the transportation cost of urine. The operations of fluidised bed reactors which are often
used for struvite production at a centralised level from waste waters is relatively complicated (e.g.
Abe 1995; Münch & Barr 2001; Ueno & Fujii 2001; Adnan et al. 2004; Udert & Wätcher 2012),
and it would hardly be viable on a decentralised scale (Wilsenach et al. 2007). Formation of
other compounds such as newberyite (MgHPO4.3H2O), bobietite (Mg3(PO4)2.8H2O), cattiite
(Mg3(PO4)2.22H2O), magnesium sodium phosphate hexahydrate (MgNaPO4.-6H2O), magnesium
hydroxide (Mg(OH)2) and tricalcium phosphate (Ca3(PO4)2) during struvite precipitation at the differ-
ent reaction conditions are also reported (KabdasļI 2018). Use of stored urine for phosphate recovery
is an emerging area of work, and the body of research is growing (Wilsenach et al. 2007; Ronteltap
et al. 2010; Antonini et al. 2011; Etter et al. 2011; Barbosa et al. 2016).
A laboratory scale continuously stirred tank reactor (CSTR) with an improved solid–liquid separ-

ation arrangement for reducing scaling on the reactor surface was developed by Wilsenach et al.
(2007) for struvite recovery. Synthetic urine having a pH of 9.4 and MgCl2 (1 M) solution were
added continuously to the reactor, having independent precipitation and settling chambers with
0.77 litre capacities. The solution was stirred using an axial flow impeller (propeller-type) submerged
halfway into the precipitation zone. The study reported over 96% of phosphate removal in the form of
struvite. The study revealed that particle size of precipitates could be controlled by limiting the super-
saturation and degree of stirring. In the study, degree of stirring and hydraulic retention time (HRT)
beyond certain minimum period (30 minutes) was found that it had no effect on the overall precipi-
tation efficiency.
Ronteltap et al. (2010) utilised a laboratory scale CSTR of 1.1 litre capacity for recovery of struvite

from stored urine using a simple flow through operation without recirculation of solids. The reactor
was operated with a HRT of 11 hours and stirred with the help of magnetic stirrer. An overflow weir at
the top for outlet of effluent and a sedimentation zone at the bottom for removal of crystals period-
ically were provided in the reactor for enabling continuous operation. Urine and magnesium
chloride solutions were continuously pumped into the reactor at a rate of 88 ml h�1 and 12 ml h�1

to achieve an average molar Mg:P ratio of 1.33.
Antonini et al. (2011) reported the use of a 50 litre capacity batch reactor for struvite recovery from

stored urine using MgO at an Mg/P molar ratio of 1.5:1. The authors presented a two-step chemical–
physical process module called ‘Yellow Water Treatment’ with a precipitation reactor followed by a
stripping and an absorption column for removal of both struvite and ammonium sulphate. In the
study, struvite recovery reactor was stirred for 30 minutes and the contents were allowed to settle
up to 3 hours for removal of precipitates using a nylon filter bag. The authors reported 98% phosphate
removal from stored urine using this process.
Etter et al. (2011) developed a manually stirred batch reactor of 50 litres capacity for struvite recov-

ery from stored urine at a decentralised level to minimise the operation and input costs. The authors
used bittern as a magnesium source with a molar ratio of Mg:P 1.1. A filter bag attached to the outlet
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below the reactor was used for filtering precipitates after each batch of stored urine is loaded and stir-
red for a period of 10 minutes. The retained filter cake in the filter bag was dried at ambient
temperatures. An overall phosphate removal efficiency of 90% was reported in the study. Although
this operation shows that struvite recovery from stored urine can be achieved using minimum process
control in decentralised settings, the manual operations proposed rendered the process
uneconomical.
Recovery of struvite from stored urine with minimum process control and operating parameters can

substantially reduce the cost. According to the published literature, factors such as temperature, pH,
HRT and degree of stirring should be taken into consideration for achieving these objectives. Zeng &
Li (2006) proposed that temperatures in the range of 15 °C–35 °C are optimal for recovery of struvite
from anaerobically digested cattle manure. However, based on a series of batch experiments con-
ducted at 5 °C–30 °C using urine, Ronteltap et al. (2007) reported rapid rates of phosphate recovery
of over 99% in all the experiments conducted. pH of hydrolysed stored urine is usually around 9.5
and therefore no pH modification is required (Stratful et al. 2001; Ronteltap et al. 2010). Rapid phos-
phate removal by bittern and water soluble magnesium sources (MgCl2.6H2O and MgSO4.7H2O)
were reported from aqueous solutions due to their high dissolution property (Shin & Lee 1997;
Burns et al. 2001). Etter et al. (2011) reported that HRT can be significantly reduced by employing
filtration process as precipitation of phosphate from urine occurs within a short span of 10 minutes.
In the experiments conducted using CSTR at mixing speeds from 0 to 600 rpm, Wilsenach et al.
(2007) found that degree of stirring had very little effect on the overall phosphate levels in the effluent.
Ronteltap et al. (2010) reported rapid nucleation of struvite crystals and formation particles in the
range of 36–136 μm in the experiments conducted using urine. Although factors such as limiting
supersaturation and stirring are reported to favour crystal growth of struvite particles over nucleation,
in this study formation of large crystals were found limited due to conditions typically found in hydro-
lysed urine. The negative zeta-potential of struvite crystals at higher pH levels occurring in urine is the
factor reported to limit growth of crystals (Le Corre et al. 2006).
Based on the review of past studies conducted using stored urine, it would be ideal to develop a

continuous flow reactor with minimal process control and low-input costs to design astruvite recovery
system at decentralised community scale operations. The following primary process parameters
favourable for struvite precipitation from stored urine were taken into consideration in the present
study to achieve the above objectives:

1. Stored urine does not require pH modification because of the high buffering capacity of
ammonium present in stored urine (Stratful et al. 2001).

2. Phosphate removal from stored urine is a very rapid process especially when highly water soluble
magnesium sources are used (Shin & Lee 1997).

3. Degree of stirring does not affect overall phosphate precipitation rate and beyond a certain mini-
mum level it only aids in improving the property of precipitates (Wilsenach et al. 2007).
MATERIALS AND METHODS

Reactor design and set-up

A continuous flow reactor of 15 litres capacity was designed for phosphate removal from stored urine
in this study (Figure 1). The vertical cylindrical shaped reactor partitioned into a reaction zone, a
solid–liquid separation and a sedimentation zone which interconnects them at the bottom to facilitate
the process of phosphate precipitation and sedimentation. The influents (stored urine and bittern)
were dosed in the reaction zone and the effluent is allowed to overflow through an outlet weir
a.silverchair.com/bgs/article-pdf/2/1/237/868168/bgs0020237.pdf



Figure 1 | Schematic of the pilot scale reactor.
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provided at top of the solid–liquid separation zone which enables the reactor to work as a continuous
up-flow reactor. The reactor was placed over a steel stand to facilitate periodic removal of struvite
sediments from the bottom of the reactor through the filtration process. A cylindrical shaped nylon
filter bag with pore sizes of 50 μm was used for filtering the precipitates at the end of each experiment.
The design specifications of the pilot scale reactor used in this study are given in Table 1.
Stored urine and bittern were allowed to flow into the reaction zone of the reactor by gravity from

two separate storage tanks of 500 and 50 litres tank capacities respectively which were kept at an
elevation using flow regulators. To improve the mixing of urine and bittern in the reactor, two sets
of arrangements were made: (1) for the experiments conducted without stirring, a curved sloping
Table 1 | Specifications of the pilot scale reactor

Description Specification

Process Continuous up-flow reactor

Treatment capacity 180 litres (2 h HRT) to 720 litres (0.5 h HRT)

Reactor capacity 15 litres

Total height 0.45 m

Overall diameter 0.25 m Ø

Reaction zone 4.5 litres

Sedimentation zone 1 litres

Solid–liquid separation zone 9.5 litres

Solid–liquid separation mechanism Sedimentationþ filtration
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channel with a rectangular cross section having 18 mm width and 15 mm depth with an overall drop
of 10 cm up from the top to the fluid level in the reactor was fixed to improve mixing of urine and
bittern entering the reactor and (2) for the stirred experiments, an overhead stirrer with an axial
flow impeller (Remi, India) was used to stir the solution at 100 rpm.
Urine and bittern

Urine required for the study was collected from waterless urinals installed in three schools of Musiri
town of Trichy District, Tamilnadu, India. The concentration of phosphate and pH of urine used in
the experiments are given in Table 2. Bittern was used as the magnesium source in the study. Bittern
collected from a salt pan near Chennai had magnesium concentration of 65.4 g·L�1. Dilution of bit-
tern using deionised water was done as required to maintain a magnesium to phosphate ratio of
1.50+ 0.1 mol Mg·mol P�1 for all the experiments. Based on the initial assessment of phosphate con-
centration in the stored urine, the ratio of magnesium to phosphate ratio was adjusted using flow
regulator installed in the tanks to obtain the desired ratio.
Table 2 | Operating parameters and effluent characteristics measured during the experiments

Influent P04-Pa (mg L�1)
(+ Standard Dev.)

Effluentb

Exp No. HRT (hours) Type of Mixing Initial pH of Urine
P04-P (mg L�1)
(+ Standard Dev.)

P04-Ptot (mg L�1)
(+ Standard Dev.)

1 0.5 No mixing (channel) 10.2 181.9 (+1.90) 32.8 (+0.93) 43.5 (+3.46)

2 1 No mixing (channel) 10.1 180.1 (+3.95) 31.4 (+4.73) 37.7 (+6.93)

3 2 No mixing (channel) 10.2 184.1 (+2.66) 28.0 (+1.94) 34.6 (+3.21)

4 0.5 100 rpm 10.2 182.2 (+2.28) 31.3 (+3.65) 47.9 (+6.40)

5 1 100 rpm 10.1 178.0 (+1.86) 30.1 (+2.34) 48.1 (+2.59)

6 2 100 rpm 10.2 179.5 (+2.21) 25.3 (+2.99) 44.2 (+9.80)

aConcentrations based on the initial measurements taken in duplicate.
bConcentrations based on the measurements taken at 2, 4, and 8 hour intervals of the experiments.
Experimental studies

The experiments were conducted at the Training and Research Centre located in Musiri, Trichy Dis-
trict in the State of Tamilnadu, India being maintained by the SCOPE, Trichy. The operational
parameters of the six experiments conducted in this study are given in Table 2. Prior to each of the
experiments, the reactor was initially filled with 15 litres of urine and dosed with bittern at an
Mg:P ratio of 1.50 mol Mg·mol P�1 and left for 30 minutes. Experiments were conducted for HRTs
of 0.5, 1 and 2 hours, both with the aid of stirring and without stirring. Each experiment lasted for
8 hours duration. Bittern was dosed at a magnesium to phosphate ratio of≈1.50 mol Mg·mol P�1.
At the end of each experiment, the reactor was emptied from the outlet at the bottom to collect pre-
cipitates for analysis, and later it was thoroughly cleaned using water dosed with acid solution for
complete removal of precipitates from the reactor.
Sampling and analysis

To analyse phosphate removal from urine in the reactor, samples in triplicate were collected at 0, 2, 4
and 8 hour intervals and filtered using 0.45 μm filter cartridges (Durapore – Millipore, Germany). In
order to determine concentration of fines escaping along with effluent, samples collected at the outlet
a.silverchair.com/bgs/article-pdf/2/1/237/868168/bgs0020237.pdf
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were analysed without filtering. Samples were acidified with 2 M HCl solution and were stored at 4 °C
prior to analysis. Samples of struvite precipitated during the experiments were collected from the reac-
tor and air dried prior to the X-ray diffraction and particle size analysis.
Concentrations of magnesium in bittern and phosphate in urine were analysed using EDTA Titri-

metric method (IS 3025 – Part 46) and colorimetrically (SpectroquantPharo, Merck, Germany)
respectively. Confirmation of crystals and the particle size were conducted using X’Pert PRO diffract-
ometer (PANalytical B.V., Almelo, The Netherlands) using (Cu Kα radiation 45 kV and 40 mA) and
Scanning Electron Microscope (Zeiss EVO 50) respectively.
RESULTS AND DISCUSSION

Precipitation efficiency

The precipitation efficiency of phosphate removal was determined by comparing phosphate concen-
trations in the influent and effluent of the reactor (Table 2). The estimates of precipitation efficiencies
for the six experiments conducted in the study from samples obtained in triplicate are 82, 82.6, 84.8,
82.8, 83.2 and 85.63 respectively (Figure 2). The first three experiments were conducted without stir-
ring and the next three experiments were conducted with stirring at 100 rpm having HRTs of 0.5, 1
and 2 hour respectively. Short durations of HRT were employed in the experiments due to the
rapid precipitation potential of struvite from stored urine. In the experiments conducted, only a mar-
ginal increase in the phosphate removal efficiencies were recorded with increased HRTs and stirring.
The precipitation efficiencies found in the study corresponds well with the values reported by Pastor
et al. (2008). The authors reported phosphate removal efficiencies up to 80% for experiments con-
ducted with a 21 litres capacity CSTR fed by artificial phosphate reagent solutions resembling
wastewater. Ronteltap et al. (2010) observed phosphate removal efficiencies up to 98.7% in exper-
iments conducted using stored urine in a laboratory scale CSTR (stirred at 300 rpm, 11 HRT and
Figure 2 | Phosphate removal efficiencies and fines lost observed in the experiments.
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1.1 litres capacity). Reduction in precipitation efficiency in the present study could be due to factors
such as dilution of urine collected (Ronteltap et al. 2010). In addition, development of localised super-
saturation in the reactor due to poor mixing and flow dynamics caused by continuous flow of urine
resulting in premature flow of urine from the reactor without complete removal of phosphate could
be the reason for the reduction of precipitation efficiency (Wilsenach et al. 2007). Etter et al.
(2011) observed an overall efficiency of 90% in the experiments conducted using real urine in a manu-
ally stirred batch reactor.

Recovery efficiency

Recovery efficiencies were determined based on the difference in phosphate concentration in the
influent and the total soluble phosphate concentration in the effluent. The percentages of recovery
efficiencies from the six experiments are 76.1, 79.1, 81.2, 73.7, 73.3 and 75.4 respectively (Figure 2).
The percentage of fines lost in these experiments, which is calculated based on the difference in pre-
cipitation and recovery efficiency, are in the order of 5.9, 3.5, 3.6, 9.1, 10 and 10.8 respectively. The
increase in HRT for the experiments conducted without stirring resulted in a marginal increase in the
recovery efficiency. This increase is due to the lesser amount of fines escaping the reactor with efflu-
ent. It is reported that an increase in the crystal retention duration was found to support better growth
of struvite crystals (Battistoni et al. 2002). However, lower recovery efficiencies observed in the stirred
experiments could be due to the transfer of power of stirring to the aqueous solution which causes
fines to escape along with the effluent (Wilsenach et al. 2007). The low specific density of struvite
of about 1.7 (Wilsenach et al. 2007) and typical formation of smaller struvite particles in the range
of 36–136 μm in urine (Ronteltap et al. 2010) can affect recovery efficiencies.

Solids and particle size

X-ray diffraction (XRD) examination of the air dried precipitates collected from one of the exper-
iments confirms the presence of struvite (Figure 3). The trapezoidal morphology of struvite
observed in the scanning electron microscopy (SEM) picture (Figure 4) resembles the crystal
shapes reported by Wilsenach et al. (2007) and Münch & Barr (2001), while x-shaped (Ronteltap
et al. 2010), coffin-like (Wierzbicki et al. 1997) and needle-like (Abbona & Boistelle 1985) are also
some typical morphologies of struvite. Particles in the range of 10.7–72.2 μm were observed for the
experiments conducted with a crystal retention period of 8 hours in the present study. A maximum
particle size of 72.2 μm was observed in the stirred experiment with 100 rpm with 2 hour HRT.
The higher crystal size observed in the stirred experiment with longer HRT could be due to the sec-
ondary crystal growth effected as a result of good stirring (Wilsenach et al. 2007).
The particle sizes measured in the experiments are lower than the values reported by Ronteltap

et al. (2010) for the experiments conducted with CSTR stirred at 300 rpm and a crystal retention
period of 4–5 days in the reactor. The authors observed struvite particles with a median diameter
of 91 μm. This difference in the particle size can be attributed to the lower crystal retention period
with minimal stirrer speed employed in the present study. Le Corre et al. (2006) reported that struvite
crystals do not agglomerate at higher pH levels due to the negative zeta-potential observed. Stored
urine usually has higher pH and has very high buffering capacities due to the higher ammonium con-
centrations (Stratful et al. 2001).

Scale formation

In all the present experiments conducted, scaling on the reactor walls observed was minimal as the
experiments were conducted with very mild stirring or without stirring and relatively with shorter
a.silverchair.com/bgs/article-pdf/2/1/237/868168/bgs0020237.pdf



Figure 3 | X-ray diffractogram of the (a) precipitate obtained in the experiment and (b) struvite standard.

Figure 4 | SEM image of struvite precipitate obtained in one of the experiments.
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HRTs. However, the long-term effects of scaling should be investigated, if the operations are to be con-
tinuously carried out. Also, scaling on the impeller surface of about 1–3 mm thickness during the
stirred experiments and 1–2 mm thickness on the surface of sloping channel used for experiments
conducted without stirring observed requires attention. As reported in the earlier studies (Wilsenach
a.silverchair.com/bgs/article-pdf/2/1/237/868168/bgs0020237.pdf
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et al. 2007; Abegglen 2008; Ronteltap et al. 2010; Etter et al. 2011), formation of scales on various
components of the reactor can pose operational problems during struvite recovery process. Ronteltap
et al. (2010) observed scaling on the reactor walls and a layer of 2 cm thick struvite deposit formed on
the bottom surface of the reactor after a runtime of 227 days. Higher mixing speeds were found to
cause increased scaling on the reactor surfaces (Wilsenach et al. 2007). Abegglen (2008) reported
that scaling could be prevented if the sedimentation time was shorter than four hours. Etter et al.
(2011) observed that shorter HRT reduced the scaling problems. The reduced effect of scaling
reported by the authors, while operating the reactor in a batch processing mode, could also be due
to the periodic recovery of precipitates carried out by emptying the reactor. Other recommended sug-
gestions for preventing scaling in the past include: reducing supersaturation during struvite
precipitation and avoiding rough surfaces in the reactor (Ohlinger et al. 1998); use of PVC and acrylic
materials for the reactors components (Mohajit et al. 1989); and masking of reactor surfaces with
removable plastic film (Wilsenach et al. 2007); seeding of reactor with struvite particles to promote
growth of particles (Agarwal et al. 2019).
Economics of struvite production

In terms of operation and maintenance, the reactor designed in this study was found to be easy to
operate. The continuous flow operation results in minimising the overall operation cost of struvite pro-
duction. In order to compare the performance of the reactor, the results reported by Etter et al. (2011)
for a manually stirred reactor of 500 litres capacity in Nepal was utilised. For this purpose, the selling
price of struvite worked out using linear regression model (Equation (1)) is Rs. 33.01 kg�1 (Tilley et al.
2009). Table 3 shows the calculations worked to arrive at the selling prices of struvite based on the
current fertiliser prices in India (Indiastat 2020). The maximum recovery efficiency of 81.2% observed
in experiment no. 3 conducted with 2 hour HRT and without stirring is taken into consideration for
the calculations.

Struvite Retail Price ¼ FVN�iN þ FVP�iP þ FVK�iK þ FVMg�iMg þ FVS�iS[NPR � kg�1] (1)

where ix is the content of the nutrient in the fertiliser in (kgx·kg�1) and FVx is the fitted financial value
of the respective nutrient. To calculate the financial value of struvite as a fertiliser, the constants FVx
were multiplied with the nutrient concentrations of struvite, which are 57 g N·kg struvite�1, 12.6
g P·kg struvite�1 and 99 g Mg·kg struvite�1.
For the purpose of direct comparison, calculation for operations using a 500 litre capacity reactor

was worked out based on the operational parameters of the 15 litres capacity reactor used in this study
(Table 4). The analysis shows that struvite production can be made profitable using the reactor devel-
oped. The profit worked out for sites with minimum transportation of bittern for a minimum distance
of 50 km and a maximum distance of 2,000 km is about Rs.21,048/- and Rs.7,048/- per annum respect-
ively. However as a trade-off, if experiments with shorter HRT are chosen for analysis, instead of
choosing higher recovery efficiencies, the profit margins can be further increased. For example, con-
sidering recovery efficiencies 76.1 or 79.1% observed in experiments conducted without stirring with
0.5 or 1 hour HRT respectively would increase the profit by three or two folds respectively due to
higher volume of urine processed and struvite recovered for a given time. However, the manually stir-
red reactor of similar capacity developed by Etter et al. (2011) used for struvite recovery in Nepal
failed to meet the operations costs due intensive labour operations required. The cost of collection
and transportation of urine to the site has not been included as it can make struvite production
from source-separated urine uneconomical (Etter et al. 2011). Struvite production from urine
should not be taken into consideration purely from the point of economics of its recovery, but it
should be viewed from the impact such projects will have on the environment and sustainability of
a.silverchair.com/bgs/article-pdf/2/1/237/868168/bgs0020237.pdf



Table 3 | Prices of fertiliser and calculation of selling price of struvite

Type of Fertiliser, Nutrients and Price N P2O5 K2O Mg S Price [INR/kg]

Complex Fertiliser 20 20 0 0 0 19.00

Complex Fertiliser 24 24 0 0 0 24.40

Complex Fertiliser 28 28 0 0 0 25.51

Complex Fertiliser 10 26 26 0 0 24.34

Complex Fertiliser 12 32 16 0 0 24.54

Complex Fertiliser 14 35 14 0 0 25.73

Complex Fertiliser 15 15 15 0 0 21.20

Complex Fertiliser 17 17 17 0 0 25.00

Diammonium Phosphate 18 46 0 0 0 42.00

Diammonium Phosphate (Imported) 18 46 0 0 0 25.10

Ammonium Sulphate 20.6 0 0 0 23 13.17

Ammonium Phospho Sulphate 16 20 0 0 13 19.05

Ammonium Phospho Sulphate 20 20 0 0 13 20.09

Muriate of Potash 0 0 60 0 0 18.98

Magnesium Sulphate 0 0 0 9.9 13 12.00

Calculation of Selling Price of Struvite Using Linear Regression
Model

Price/kga Subsidy/kgb Total Price/kg

Nitrogen N 51.64 18.9 70.54

Phosphorus P 47.92 15.21 63.13

Potassium K 30.85 11.12 41.97

Magnesium Mg 109.66 0 109.66

Sulfur S 8.79 3.56 12.35

Struvite (N:5.7%, P:28.9%,Mg:9.8%) Total price including subsidy based on N, P & Mg price
calculated above

33.01

aCalculated based on the current fertiliser prices in the market (Indiastat 2020).
bFertiliser subsidy provided by the Government of India.
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resources. Decentralised operations with low technological inputs can potentially reduce the oper-
ation costs and can provide opportunities to small communities and institutions to recover struvite
using urine (Wilsenach et al. 2007).
SUMMARY

The following conclusions can be drawn from experiments conducted using the continuous up-flow
struvite reactor developed in this study:

• Around 85% precipitation and 81% recovery efficiencies of phosphate by the continuous up-flow
struvite reactor designed in study was recorded.

• The experiments conducted reveal that precipitation of struvite from urine using bittern can be con-
ducted without the need for external mixing of the aqueous solutions in the reactor. Experiments
conducted with 100 rpm mixing have shown higher loss of the fines precipitated to the effluent.

• The XRD analyses confirm that the precipitates obtained in the experiments are struvite. Mor-
phology and the particle size studied are in agreement with previous studies.

• Scale formation on the components of the reactor was minimal due to shorter HRTs and relatively
mild stirring employed, however this could pose problems during continuous operations. Periodic
cleaning of the reactor components after recovery of struvite is necessary to reduce the scaling
problem.
a.silverchair.com/bgs/article-pdf/2/1/237/868168/bgs0020237.pdf



Table 4 | Economics of struvite production

Description
Low-cost reactor developed in
Nepal (Etter et al. 2011)a Continuous up-flow reactor developed in this studya

1. Operation parameters
Reactor operation Filtration & Manual Stirring Sedimentationþ Filtration & No stirring
Reactor capacity 500 L 500 L
Cycles per day 8 D�1 Continuous (2hrs HRT-24 hrs)
Struvite recovery
efficiency

90% 81%

Yearly struvite
production (250
workdays)

1,400 kg 1,893 kg

Molar Mg:P ratio 1.1 molMg·mol P�1 1.5 molMg·mol P�1

2. Installation costs (based on inflation ratesb) (based on current prices in India)
Steel tank for reactor Rs.17,023 Rs. 30,000
Additional tanks, fittings,
pipes etc.

Rs.31,537 Rs. 50,000

Building Rs.33,867 Rs. 40,000
Total Rs.82,427 Rs.1,20,000
Operation duration 10 years 10 Years
Amortisation (per
annum)

Rs.8,243 Rs.12,000

Capital costs (12% per
annum)

Rs.990 Rs.1,440

3. Expenses
Amortisation and capital
costs (per annum)

Rs.5,150 Rs.13,440

Labour charges (per
annum)

Rs.1,12,890 Rs.27,000c

Bittern price (per
annum)

Rs.34,763 Rs.1,000–15,000d

Total (per annum) Rs.1,52,803 Rs.41,440–55,440

4. Revenue
Sale of struvite (per
annum)

Rs.46,124e Rs.62,488e

5. Profit (per annum) A loss of Rs.1,06,679 is
incurred

Operation can be performed without making a loss. Profit
for sites with minimum transportation of bittern for a
distance of 50 km and a maximum distance of 2,000 km is
about Rs.21,048/- and Rs.7,048/- per annum respectively.

aAll financial costs are given in Indian Rupees. Nepali rupee is converted using 1NRs¼ 0.63 INRs.
bBased on total inflation rate of 79.19% from 2011 to 2020 in India has been considered for calculations.
cLabour charges for two days per week @Rs.300 D�1 for 45 weeks.
dBittern transportation price @ Rs.3 per ton/km for transporting 1.5 ton of bittern (distance taken for calculation minimum: 50 km @ Rs.1,000/- and maximum

2,000 km @ Rs.15,000/- per annum).
eStruvite price worked out for India based on current fertiliser rate using linear regression Rs.33.01 kg�1.
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• Struvite can be produced economically in decentralised operations using the continuous flow reac-
tor developed in this study due to lower operational costs.
ACKNOWLEDGEMENT

The financial support of UNICEF India is gratefully acknowledged. The funding source was neither
involved in the study design, nor the collection, analysis or interpretation of the data. The authors
are grateful to Mr Subburaman (SCOPE) and his team for extending excellent support to conduct
this study. The assistance in analyzing the samples required for this study by the staff at Thin Film
Laboratory, IIT Delhi and SITRA, Coimbatore is sincerely acknowledged.
a.silverchair.com/bgs/article-pdf/2/1/237/868168/bgs0020237.pdf



Blue-Green Systems Vol 2 No 1
248 doi: 10.2166/bgs.2020.005

Downloaded from http://iw
by guest
on 09 April 2024
DATA AVAILABILITY STATEMENT

All relevant data are included in the paper or its Supplementary Information.
REFERENCES

Abbona, F. & Boistelle, R. 1985 Nucleation of struvite: single crystals and agglomerates. Crystal Research and Technology 20 (2),
133–140.

Abe, S. 1995 Phosphate removal from dewatering filtrate by MAP process at Seibu treatment plant in Fukuoka City. Sewage
Works in Japan 59–64.

Abegglen, C. K. 2008 Membrane Bioreactor Technology for Decentralized Wastewater Treatment and Reuse. PhD thesis, Nr.
17998, Swiss Federal Institute of Technology Zurich, Switzerland.

Adnan, A., Dastur, M., Mavinic, D. S. & Koch, F. A. 2004 Preliminary investigation into factors affecting controlled struvite
crystallization at the bench scale. Journal of Environment Engineering and Science 3 (3), 195–202.

Agarwal, S., Guest, J. S. & Cusick, R. D. 2019 Elucidating the impacts of initial supersaturation and seed crystalloading on
struvite precipitation kinetics, fines production, and crystal growth. Water Research 132, 252–259.

Antonini, S., Paris, S., Eichert, T. & Clemens, J. 2011 Nitrogen and phosphorus recovery from human urine by struvite
precipitation and Air stripping in Vietnam. CLEAN – Soil, Air, Water 39 (12), 1099–1104.

Barbosa, S. G., Peixoto, L., Meulman, B., Alves, M. M. & Pereira, M. A. 2016 A design of experiments to assess phosphorous
removal and crystal properties in struvite precipitation of source separated urine using different Mg sources. Chemical
Engineering Journal 298, 146–153.

Battistoni, P., de Angelis, A., Prisciandaro, M., Boccadoro, R. & Bolzonella, D. 2002 P removal from anaerobic supernatants by
struvite crystallization: long term validation and process modelling. Water Research 36 (8), 1927–1938.

Burns, R. T., Moody, L. B., Walker, F. R. & Raman, D. R. 2001 Laboratory and in-situ reductions of soluable phosphorus in
liquid swine waste slurries. Environmental Technology 22 (11), 1273–1278.

Chimenos, J. M., Fernandez, A. I., Villalba, G., Segarra, M., Urruticoechea, A., Artaza, B. & Espiell, F. 2003 Removal of
ammonium and phosphates from wastewater resulting from the process of cochineal extraction using MgO containing by-
product. Water Research 37 (7), 1601–1607.

Demirer, S. U., Demirer, G. N. & Chen, S. 2005 Ammonia removal from anaerobically digested dairy manure by struvite
precipitation. Process Biochemistry 40, 3667–3674.

Etter, B., Tilley, E., Khadka, R. & Udert, K. M. 2011 Low-cost struvite production using source-separated urine in Nepal. Water
Research 45 (2), 852–862.

Indiastat 2020 Grade-wise Maximum Retail Price of Fertilizers in India. Available from: https://www.indiastat.com/table/
agriculture-data/2/fertiliser-prices/17825/1330716/data.aspx (accessed 5 May 2020).
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