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Abstract

Extreme weather and the proliferation of impervious areas in urban watersheds increases the frequency of flood
events and deepens water quality concerns. Bioretention is a type of green infrastructure practice developed to
mitigate these impacts by reducing peak flows, runoff volume, and nutrient loads in stormwater. However,
studies have shown inconsistency in the ability of bioretention to manage some pollutants, particularly some
forms of nitrogen. Innovative sensor and control technologies are being tested to actively manage urban storm-
water, primarily in open water stormwater systems such as wet ponds. Through these cyber-physical controls, it
may be possible to optimize storage time and/or soil moisture dynamics within bioretention cells to create more
favorable conditions for water quality improvements. A column study testing the influence of active control on
bioretention system performance was conducted over a 9-week period. Active control columns were regulated
based on either maintaining a specific water level or soil moisture content and were compared to free draining
(FD) and internal water storage standards. Actively controlled bioretention columns performed similarly, with the
soil moisture-based control showing the best performance with over 86% removal of metals and total suspended
solids (TSS) while also exhibiting the highest ammonium removal (43%) and second highest nitrate removal (74%).
While all column types showed mostly similar TSS and metal removal trends (median 94 and 98%, respectively),
traditionally FD and internal water storage configurations promoted aerobic and anaerobic processes, respectively,
which suggests that actively controlled systems have greater potential for targeting both processes. The results
suggest that active controls can improve upon standard bioretention designs, but further optimization is required
to balance the water quality benefits gained by retention time against storage needs for impending storms.
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INTRODUCTION

Degradation of urban waterways has caused poor water quality and a decline in ecosystem services
worldwide. Stormwater is one major source of impairment for urban systems, leading watershed man-
agers to seek mitigation strategies (USEPA 2016). As such, the use of green infrastructure (a principal
component of Water Sensitive Urban Design) has become more prevalent for treating stormwater
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runoff before its release into larger stream systems due to its holistic social, ecological, and hydrolo-
gical benefits (Fletcher ef al. 2015; Larsen et al. 2016). In particular, bioretention cells (also known as
bioretention areas or biofilters) have shown promise for reducing the effects of stormwater pollution
on urban waterways. Bioretention cells are designed to replicate natural environmental processing.
Using permeable soil media and native plant species, they incorporate infiltration and various
pollution removal mechanisms to reduce both the volume and pollutant concentrations in stormwater
runoff. Bioretention practices have shown the ability to significantly reduce nutrient, metal, and
pathogenic bacteria concentrations in urban runoff. (Henderson et al. 2007; Hunt et al. 2008; Hatt
et al. 2009; Hathaway & Hunt 2012).

The interactions between media, plants, and microbes are a primary source of research in literature
when seeking to understand bioretention function (Hunt ef al. 2012; Glaister et al. 2017; Yan et al.
2017). Variations in bioretention design have been used to optimize functionality of these systems
by changing these interactions. Free draining (FD) bioretention systems, a common first-generation
design, have shown good success, but often are dominated by aerobic conditions and lack the ability
to consistently perform both nitrification and denitrification (other than in internal microsites) (Hunt
et al. 2012; Laurenson et al. 2013; Tang & Tian 2016; McPhillips et al. 2018). Implementation of
internal water storage (IWS) zones have been used in an attempt to allow both aerobic and anaerobic
environments to promote nitrification and denitrification processes, however, there is the potential for
lost storage capacity with these systems depending on the underlying soil infiltration rate (Dietz &
Clausen 2005; Li et al. 2014; Waller et al. 2018). Both designs, while generally successful, are
static. That is, they cannot adapt to changing conditions, or switch between storing and releasing
water to optimize runoff reduction and water quality performance.

The optimal operation of bioretention systems is largely site-specific because no two areas are under
the same environmental stressors. Further, extreme weather events may necessitate occasional devi-
ations in operation to accommodate large volumes of water. Active control systems have been
recently studied to manage stormwater systems using networks of valves and sensors (Mullapudi
et al. 2017; Mullapudi et al. 2018). They direct stormwater flows in and out of a watershed network
to mitigate flood effects in cities (Parolari et al. 2018), however, research has typically focused on
ponds and other storage systems. The effects of active controls on bioretention cells have only recently
been considered for the purposes of water harvesting with a focus on indicator bacteria reduction
(Shen 2019). Using active control systems to optimize bioretention function has the potential to
allow consideration of sometimes conflicting objectives, but also creates a dynamic environment
for soils, plants, and microbes that is unexplored in this cyber-physical context and may have unin-
tended consequences.

Adding active control to the already dynamic bioretention environment poses some challenges, but
also provides opportunities. Drying and wetting cycles are an unavoidable and highly influential com-
ponent of bioretention cell function and can lead to inefficiencies in performance (Manka et al. 2016).
Drying periods affect soil structure and biological processes which can lead to metals export,
microbial dormancy, and lowered water holding capacity of a soil (Blecken et al. 2009; Laurenson
et al. 2013). When dry periods end and a storm event channels stormwater into a treatment area, a
flushing effect is observed. Drying periods cause mineralization and exposure of previously unavail-
able organic matter in soils which cannot be sufficiently processed by microbes due to their
inactivity in dry periods; although some microbial communities have developed resistances to dry
climate conditions (Zhou et al. 2016; Salazar et al. 2018). The result is a nutrient export once wet con-
ditions arise (Vangestel et al. 1993; Pulleman & Tietema 1999). Drying and wetting cycles also alter
soil respiration rates which can increase or decrease depending on soil type (Fierer & Schimel 2002).
Lowered soil respiration occurs once a bioretention media is constantly inundated with moisture
which prohibits plant root access to oxygen or facilitation of nutrient uptake, and leads to die off
(Colmer 2003; Payne et al. 2014). This further reduces the efficiency of bioretention areas. Active

Downloaded from http://iwa.silverchair.com/bgs/article-pdf/1/1/55/867714/bgs0010055.pdf

bv auest



Blue-Green Systems Vol 1 No 1
57 doi: 10.2166/bgs.2019.924

controls can both exacerbate these effects, for instance if water is released based on forecasted rainfall
that does not occur or can improve these conditions if the outlet is managed to maintain a more
consistent soil moisture regime.

This research aims to improve the understanding of how the performance of bioretention systems
can be improved using active control to regulate operating conditions. This work highlights the
benefits and tradeoffs of active controls in comparison to traditional bioretention designs. By compar-
ing two standard passive bioretention designs to two active control strategies, the objectives are to
(1) quantify and examine metal and nutrient removal from the four treatments and (2) investigate
and compare the performance of the two active control schemes.

METHODS
Bioretention column design

The experiment was designed to mimic traditional operational conditions of bioretention in the
United States whereby impermeable liners are uncommon, thus captured runoff is allowed to exfil-
trate the system (i.e. seepage) at a rate consistent with the in-situ soil infiltration capacity. The
columns were constructed using 30-cm diameter gray PVC with both a small valve to mimic seepage
(seepage outlet) and an underdrain on the bottom of each column to allow drainage. Seepage outlets
were adjusted to mimic an infiltration rate of 0.20 cm/hr (in the range of a clay soil type) and were
frequently maintained to avoid biological fouling. The interior of each column was sanded to mini-
mize the effects of preferential flow. Columns were filled using layers of gravel (washed #57 stone),
washed pea gravel, sand, bioretention media and mulch with a 10-centimeter ponding zone (Figure 1).
The composition of the bioretention media was 85-88% sand, 10% clay/fines, and 2-3% organic
matter, consistent with design suggestions in the United States for Tennessee and North Carolina
(TSM 2015; NCDEQ 2018). Each column contained one Echinacea purpurea (purple coneflower)
and one Juncus effuses (common rush). Bioretention columns were kept in a climate-controlled
greenhouse where temperatures were maintained at seasonal averages (15-27 °C).

Four outlet configurations were tested with five replicates being used for each configuration, a total of
20 columns (Figure 1). Configuration one was traditional free drainage (FD), where the underdrain pro-
vided unobstructed drainage from the column (i.e. drained via gravity). The second configuration was
internal water storage (IWS, also known as a Submerged Zone), where a submerged zone of 45
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Figure 1 | Column design configurations.
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centimeters was present in the bottom of the column and regulated by an upturned elbow in the piping.
The remaining two configurations were actively managed using automated, remotely controlled, ball
valves based on two experimental active control schemes. Both configurations relied on historic rainfall
data and historic rainfall predictions as described in the Experimental procedure section.

For configuration three (SM, Soil Moisture), the system valve was opened and closed as needed to
maintain, to the degree possible, field capacity in the column soils based on real time monitoring data
and rainfall predictions (see Monitoring description below). Field capacity was used as a target in this
study because it is the optimal moisture level to facilitate microbial activity (Barros et al. 1995).
Finally, configuration four (VC, Volume Control) involved use of a level controller to maintain
water storage levels at 30 centimeters based on continuous monitoring and rainfall predictions as
further described in Experimental procedure. A lower water storage level allowed the opportunity
to test the ability of the active control to achieve similar water quality performance to IWS despite
the smaller internal storage depth.

Bioretention column monitoring

Decagon GS1 soil moisture sensors were buried in each column at depths of 30.5 and 61 cm from
the top of the media. The sensors were calibrated in the Department of Civil and Environmental
Engineering hydraulics laboratory by incrementally saturating a known volume of bioretention
media and recording raw sensor readings (a method consistent with manufacturer suggestions for
calibration). Water storage levels were measured in the fourth configuration (VC) using a Stevens
pressure transducer. Error estimates for the soil moisture sensors and pressure transducers were
+0.03m>/m> and +0.02% respectively. Continuous monitoring for each column were stored on
an InfluxDB database and visualized using Grafana, including soil moisture readings, pressure
transducer depths (configurations three and four), and when active control valves opened or
closed. Active control was achieved using photon microcontrollers to trigger valves to drain or
retain water consistent with the corresponding management scheme.

Weather data

Nine weeks of rainfall data recorded by the National Oceanic and Atmospheric Administration
(NOAA) from June to July 2017, in Knoxville TN, were mimicked in this study, that is, were used
to inform the number and size of applications to the columns. Although this study was carried out
in the autumn of 2018, data for the months of June and July 2017 were used due to high density
and variety of precipitation events observed over that period. A total of 18 events occurred during
this period ranging from 0.18 to 3.81 cm, with a median size of 0.56 cm. In addition, the precipitation
forecast preceding each storm event (at 12 hours before a given event) was obtained to inform the
active control treatments (configurations SM and VC). These historic quantitative precipitation fore-
casts and events for 2017 were obtained from the National Oceanic and Atmospheric Administration
(NOAA). The weather station at the McGhee-Tyson airport in Alcoa, Tennessee, was used as a
reference location when obtaining forecast data.

Experimental procedure

Pre-event

During each day of the study, weather predictions for the next day of the rainfall time series were
observed to determine if a rain event was projected to occur. If so, the predicted rainfall depth was
sent out that night via wireless communication to signal the release, if necessary, of stored water
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from actively controlled columns in accordance with their respective schemes. For treatment three,
the runoff produced as a result of the predicted rainfall was quantified and considered along with
the current soil moisture conditions at the 30-cm sensor. The amount of predicted runoff that
could be captured given the existing soil moisture, without exceeding field capacity, was calculated
and any amount in excess of this value was preemptively released from the valve to provide the
necessary additional storage. Drainage from the system was still possible despite the system being
at field capacity as (1) our measurement of field capacity was likely an overestimate as it was calcu-
lated in a laboratory setting (Kirkham 2005), (2) water was released from deeper in the profile where
water was stored in places such as the gravel layer, and (3) opening of the drainage port created a new
equilibrium in the system. For treatment four, the amount of predicted runoff that could be captured
without exceeding the targeted IWS depth was determined, and any excess amount was preemptively
released to make room for the predicted event. The influence of weather uncertainty in the control
scheme meant that a predicted storm event did not always occur even though the valve opened
and released water in preparation. In the same respect, storm events sometimes occurred when
there was no forecasted event. Although this type of forecast error added complexity to the experimen-
tal method, it was necessary to realistically reflect the function of actively controlled bioretention
which are subject to weather uncertainty.

During event

During the event, columns three and four were actively managed to maintain targeted conditions. For
instance, during an event for treatment three, once soil moisture readings exceeded field capacity the
active control valve drained until field capacity was reached. Likewise, for treatment four, the column
was triggered to open as needed to maintain the 30-cm depth. These schemes thus provided both a
preemptive and adaptive control to manage internal conditions.

Stormwater application

Storm events smaller than 1 mm were excluded from this study as runoff would not be produced from
a typical urban catchment for these storms (Guo & Adams 1998; Le Coustumer ef al. 2012). Previous
work researching bioretention systems have used local climate data to determine dosing volumes.
Chandrasena ef al. (2017) report using a storm size of 5.75 mm per event while Glaister et al.
(2017) and Morse et al. (2018) used a local yearly average of 540 mm. Each storm event was applied
based on 20:1 sizing ratio for each column (TSM 2015). Columns were dosed with synthetic storm-
water following procedures outlined by Bratieres et al. (2008). In short, tap water in the
greenhouse was used to make the stormwater mixture which was supplemented with various chemi-
cals to meet, to the extent possible, target concentrations shown in Table 1. Sediment added to the
stormwater mixture was collected from a local concrete-lined detention pond and sieved to 300 um
to remove larger particles and meet a target total suspended solids (TSS) concentration of
150 ppm. The nutrient contributions from the sediment were analyzed prior to mixing and were con-
sidered when preparing the final mixture. The stormwater mixture was continuously and vigorously
mixed as columns were dosed with the prescribed amount of stormwater for a given event. Each
dose was applied in three passes to ensure consistency in the stormwater concentrations received
by each column. In the event that a column reached capacity, as evidenced by the column filling to
the top and no longer receding, the application was ceased.

Water quality sampling

Water samples of column discharge were collected 24 hours after each event, allowing completion of
free drainage. An initial water quality sample of the inflow was also taken when semi-artificial
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Table 1 | Sediment contributions and stormwater target concentrations

Constituent Sediment Contribution (mg/L) Target Concentration (mg/L)
NO,-N 0.01879 0.75
NH{-N 0.00335 0.27
TDP 0.002 0.04
Cu*t 0.0055 0.05
Zn* 0.0043 0.25
Pb** 0.0045 0.14
Cré* 0.0026 0.025
Mn?* 0.0012 0.25
Fe3* 0.0151 1

Ni%* 0.0003 0.03
Cd** 0.0006 0.0045

stormwater was applied. Because rainfall predictions signaled opening of active control valves in
preparation for anticipated rainfall events, samples were also occasionally collected of column
discharge due to predicted precipitation that did not occur. That is, the columns were actively con-
trolled and discharged for an impending event that did not happen. Samples were analyzed for
TSS using standard methods (SM 2540 D), for nutrients (NO,-N, NOs-N, and NH-N) using ion
chromatography, and for dissolved metals (Cu®", Zn*", and Mn?") using inductively coupled
plasma mass spectrometry (ICP-MS). Prior to sampling for nutrients and metals, samples were filtered
through 0.45 um Whatman disposable filters. They were also acidified using a 1% dilution with con-
centrated nitric acid prior to ICP-MS analysis. Samples were stored in refrigeration after filtration
awaiting analysis.

Statistical analysis

Statistical analysis for this research was conducted using MATLAB R2018a. Percent reduction for
each pollutant was calculated by subtracting the outflow from inflow Event Mean Concentration
(EMC) then dividing by the inflow EMC. First, a Kolmogorov-Smirnov test was used to confirm
the presence or absence of normality on raw data. Data were found to be non-normally distributed,
necessitating non-parametric statistical analysis. The Wilcoxon signed-rank test was used to determine
statistical differences among the treatments and antecedent rainfall effects on water quality were
measured using a Spearman’s Rank correlation coefficient. A 0.05 significance level was used to
indicate statistical significance.

RESULTS AND DISCUSSION
Soil moisture and active control

To explain the water quality results from this study (Table 2), an understanding of how each treatment
affects system hydrology is necessary. In particular, soil moisture dynamics are critical to biogeochem-
ical processes in these systems. As noted above, soil moisture readings collected throughout this study
were taken at 30 and 60 centimeters below the surface of the bioretention media. Field capacity of the
bioretention media was measured to be 28% (v/v) and was used as the marker for active control in the
SM treatment. The readings for one storm event are shown in Figure 2 while the average readings for
each storm event are shown in Figures 3 and 4, which highlight trends in treatment types. The period

Downloaded from http://iwa.silverchair.com/bgs/article-pdf/1/1/55/867714/bgs0010055.pdf

bv auest



Blue-Green Systems Vol 1 No 1
61 doi: 10.2166/bgs.2019.924

Table 2 | Event mean concentration (EMC), median concentration, standard deviation (Std Dev) and relative standard deviation
(RSD) for each treatment type

Pollutant configuration EMC (mg/L) Median (mg/L) Reduction (%) std Dev RSD (%)
Cu?* Ve 0.012 0.009 64.9 0.007 60.0
SmP 0.004 0.004 86.6 0.001 207
WS 0.003 0.003 90.4 0.001 23.6
FDP 0.004 0.004 872 0.001 18.3
Mn?* Ve 0.008 0.005 952 0.008 96.3
SV 0.009 0.007 94.8 0.008 855
IWsP 1.961 1.984 ~995.6 0.445 227
FD* 0.011 0.006 935 0.013 1137
Zn?* Ve 0.010 0.006 953 0.007 69.1
smP 0.015 0.012 93.1 0.009 60.1
IWS? 0.013 0.004 94.5 0.025 183.9
FDP 0.014 0.011 935 0.007 50.9
NH;-N Ve 0.008 0.007 412 0.004 46.6
smP 0.013 0.009 43 0.013 107.4
IWS? 0.026 0.028 263 0.017 65.0
FDP 0.010 0.011 39.1 0.004 425
NO;-N vee 0.087 0.041 ~19.9 0.167 192.6
SM 0.100 0.046 ~186 0.196 196.0
wsP 0.069 0.049 ~87.9 0.102 146.9
FD* 0.062 0.046 -147 0.116 185.9
NO;-N Ve 0.824 0.743 73.6 0.545 66.2
SsmP 0.759 0.525 743 0.621 81.8
IWs® 0.138 0.096 95.6 0.206 149.6
FD¢ 1.007 0.977 672 0.524 52.1
TSS vC 2,681 16 97.4 2,930 109.3
SM 2,913 11 97 3.929 1349
WS 1.940 12 98.2 2.353 1213
FD 1749 17 98.1 2.985 170.7

*letters indicate significant difference (a« =0.05) per Wilcoxon Sign-Rank test within each pollutant, if no letter is present, there is no significant difference for that
configuration.
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Figure 2 | Soil moisture at 30-cm depth for storm on 10/31/2018.

for each storm (for the sake of soil moisture summary statistics) was defined as the 24 hours following
the start of each storm event. As expected, the IWS treatment has a higher soil moisture content that
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Soil Moisture 30-cm Depth
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Figure 3 | Average soil moisture at 30-cm depth for each storm. Storms are defined as the 24-hr period following a storm
event.
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Figure 4 | Average soil moisture at 60-cm depth for each storm. Storms are defined as the 24-hr period following a storm
event.

the other treatments, in particular for the deeper sensor, while the FD was the driest system at the
shallow (30-cm) reading. This is a result of IWS creating internal storage and promoting wetter con-
ditions, while FD being freely drained and retaining less moisture in the upper soil profile.
Comparable soil moisture patterns were observed for the active control treatments. At the 30-cm
sensor, both active control treatments operated between IWS and FD, while at the 60-cm depth,
VC, SM, and FD all showed similar soil moisture readings and patterns. SM was slightly more wet
than FD, while VC was slightly drier than FD at the deeper depth.

The difference in control scheme between VC and SM treatments was in the operation of the
solenoid valve to store or release water. More sporadic open and close cycles were seen for the VC
treatments while SM treatments exhibited a more stable open and close cycle for each storm event
(over the course of the study opening an average of 693 and 50 times respectively). Because VC treat-
ments were based on a target storage depth within the column, collection and reaction times between
pressure transducer readings and solenoid valves to maintain a 30-centimeter storage depth caused
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more frequent opening and closing of the solenoid valve. This could be corrected in future studies by
allowing depths ranging from 28 to 32 cm, for instance. On the other hand, the SM treatments
required the maintenance of a specific soil moisture reading. Soil moisture sensors would trigger
release only when field capacity was exceeded. The collection and reaction timing were slower,
and solenoids were open and closed for longer periods of time while soil moisture changes occurred
at the 30-cm sensor. Essentially, once the solenoid was open, there was a delay in soil moisture
changes as water percolated out of the system.

TSS

TSS removal for all treatments was above 97%, which is unsurprising given that this parameter is typi-
cally removed by upper soil layers which are generally not influenced by treament type (Hunt ef al.
2012). This is consistent with previous studies which report TSS reduction between 80% and 98%
(Hatt et al. 2009; Blecken et al. 2010). Median effluent TSS concentrations were between 1.1 and
1.7 mg/L among the treatments with FD having the highest (1.7 mg/L) and SM (1.1 mg/L) having
the lowest values. Similar laboratory studies of bioretention by Blecken ef al. (2010), and Bratieres
et al. (2008) reported comparable TSS concentrations of 2 mg/L, and 0.9-7.2 mg/L respectively.

Metals

Overall, effective removal of metals was observed across all treatment types, in particular for Zn*"
(Figure 5). This is consistent with observations seen in previous studies such as Laurenson et al.
(2013) in which over 90% removal was reported for Zn*". When comparing Zn*" to Cu?" and
Mn?*, however, Zn?" has over 93% removal for all treatment types, while more variability is noted
for the other constituents. The more variable results for Cu*" and Mn?" are likely due to differences
in treatment type and the variable conditions they provide. The overall magnitude of removal
observed for Cu®" is in line with previous studies from Blecken ef al. (2009) and Laurenson et al.
(2013) who showed 70% and >90% removal of Cu®", respectively, between treatments.

Removal of Cu®" between SM, IWS, and FD treatments were all similar, ranging from approxi-
mately 87 to 90%. However, there was an observable difference in Cu?" removal by the VC
treatment, which could be a result of the more frequent, rapid, small water releases associated with
this treatment type (as compared to SM) (Figure 6). The more frequent storage and release by the
VC scheme may alter the redox potentials within VC treatments by allowing oxygen into the
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Figure 5 | Zn?* outlet concentrations for all treatment types.
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Figure 6 | Cu®*outlet concentrations for all treatment types.

system when active control valves open and close which limits Cu?" sequestration through adsorp-
tion. Similar changes in redox potential have led to Cu®>" dissolution because of oxic and anoxic
variability within a given system (Hamilton-Taylor ef al. 1996; Chaudry & Zwolsman 2008). The
other treatment types had more stability in transporting water through the columns and were able
to remove Cu®" from stormwater influent more effectively. As noted above, these frequent releases
may have been mitigated to some degree by utilizing a scheme that allowed an acceptable range of
storage depths as opposed to one singular objective (30 cm). This would allow active control systems
to better maintain a consistently anaerobic zone by minimizing level fluctuations.

In Figure 7, Mn?" is exported from IWS treatments while all other columns showed similar removal
trends to other metals. Media descriptions from the bioretention media manufacturer showed high
levels of manganese in the media mix (Manganese Index = 175). Furthermore, anaerobic heterotrophs
within the IWS systems use manganese compounds within soils as electron donors and the reduced
metal ions then leach out of the system (Nealson & Saffarini 1994; Lee ef al. 2001; Lovley et al. 2004).
Because Mn?" is soluble and mobile it can be transported readily, effectively flushing from the
system. The IWS treatment appeared to facilitate anaerobic processing more than the other
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Figure 7 | Mn?* outlet concentrations for all treatment types.
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treatments (which is logical based on the soil moisture data) which likely explains the Mn?" leaching.
It should be noted that manganese concentrations are not typically a criterion in design manuals for
bioretention media mixtures.

Nutrients

Nitrogen processing within bioretention systems was a focal point of this study, because export of
nitrogen (NO3-N) has been observed in previous studies after long periods of dry conditions and
due to a presumed lack of the necessary anaerobic conditions in some bioretention designs, a required
condition for denitrification (Hatt et al. 2007; Hsieh et al. 2007; Blecken et al. 2010; Manka et al.
2016). As noted above, the SM active control treatment was designed to target field capacity to bolster
microbial activity, specifically aerobic and anaerobic microbial processes, in an attempt to meet
multiple nitrogen processing objectives (Barros ef al. 1995; Schimel 2018). Nutrient dynamics are
described through the lens of microbial activity, which should be considered as influencing nutrient
processing.

NOs3-N showed high variability in performance between treatment types with mean effluent con-
centrations ranging from 0.14 to 1.01 mg/L for the IWS and FD treatments, respectively (Figure 8).
The FD treatment showed the least NO3-N removal (67.2%), which is not surprisng as it is the treat-
ment considered to primarily foster an aerobic environment, resulting in the most limited conditions
to facilitate denitrification (Collins ef al. 2010). FD has no designated anaerobic zones to allow con-
version, so any denitrification would have to be facilitated within the micropores of the bioretention
media. The lack of denitrification as a result of the aerobic environment promoted by FD systems has
been noted in studies such as Davis et al. (2006) and Li et al. (2014). IWS shows the greatest removal
of all treatments (95.6% removal). This is attributed to a constant anaerobic zone in the IWS columns
which facilitates denitrification. The VC and SM treatments showed similar performance with
removal percentages between that of FD and IWS (73% and 74% removal, respectively). The VC treat-
ment has a more shallow anaerobic zone than IWS and more frequent release which allows more
aerobic processing than the IWS systems. At the same time, SM treatments allow a more stable
release and are not dictated by a particular storage depth, but still retain more water than the FD
treatment, resulting in aerobic and anaerobic processing.

Nitrification is being promoted within all treatment types but most notably the FD treatment. As
discussed above, this is expected based on the primarily aerobic environment provided by FD designs.
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Figure 8 | NO3-N outlet concentrations for all treatment types.
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Conversely, the IWS NHj;-N effluent concentrations are indicative of more limited aerobic proces-
sing, which is similar to results shown in Tang & Tian (2016) where IWS had less NH;-N
reduction than the traditionally FD column (63% and 71% respectively). The NH;-N remaining in
the IWS system and being exported indicates the issue of incomplete aerobic processing. As noted
above, VC and SM treatments both allow for more of an anaerobic zone than the FD treatments
and less than that of the IWS treatment. They perform similarly to the FD treatment in regard to
NHZ-N reduction because of their presumed greater depth of aerobic zone but perform better than
FD in regard to NO3 removal. This shows that there is more anaerobic processing facilitated in the
actively controlled treatments, and that these systems may allow a balance between the conditions
observed in FD and IWS designs.

Although NO-N is a less frequently reported and discussed parameter, it is often lumped with
NO3-N and reported as NO,-N, it provides some insight into the denitrification process in the
treatments. Overall, there is a consistent export of NO3-N from all treatments (Figure 9). When
coupled with data observed for NO3-N and NHj-N, NO3-N trends suggest the possibility of
incomplete dentrification in the columns (Figures 8-10). That is, NO3-N is converted to NO;-"N
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Figure 9 | NO, -N outlet concentrations for all treatment types.
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and produces N,O gas (a greenhouse gas of major concern), but full conversion to N gas is not occur-
ring. This is potentially due to an inadequately deep saturated zone (lack of substantial anaerobic
conditions) within these systems. This is worthy of further study, as completing the denitrification
cycle is of critical importance for nitrogen management in biofilters.

A period of particular interest is the storm events and subsequent treatment that occurred in mid-
October. Export of NO;-N was noted, and to a smaller degree an increase in NO5-N for some
treatments, which follows the largest event during the study period and occurred during the
smallest stormwater application of the study. It should also be noted that the upper soil layers for all
columns were relatively dry during this event compared to the rest of the study. While the exact
cause of this export is unknown, it is likely the result of large shifts in soil moisture between the two
events and the subsequent impacts to biogeochemical processes (i.e. Manka et al. 2016). It should
be noted that the IWS treatment was able to completely capture this event due to available storage.

Although unintentional, this spike in NO,-N does act as a sort of chemical tracer for the system,
allowing an understanding of the differences in recovery times for each treatment type, that is, the
amount of time required to bring the system back to producing typical NO,-N effluent concentrations.
This was generally linked to the amount of flushing provided by each treatment type. The FD treat-
ment recovers after the next applied storm while other treatments required additional storm events
before effluent NO,-N concentrations return to a baseline in the system. This observation is likely
due to the speed with which water moves through each treatment type. The FD treatment has the
fastest flow through the system because it freely drains, with the VC, SM and IWS following in
decreasing flow speed and increased water storage. The rate of flushing also infers differences in
detention times between the systems, which likely also influences performance.

Influence of antecedent conditions

Correlations between both 5-day antecedent rainfall and pollutant removal, and the antecedent
number of dry days and pollutant removal (for all pollutants) were analyzed to determine the influ-
ence that wet and dry conditions have on water quality (which has been shown in studies such
as Hatt et al. (2007) and Tang & Tian (2016)). Nutrient processing through physical and microbial
interactions have the potential to be overloaded when a system is tasked with managing frequent
storm events. Likewise, periods of drought can affect biogeochemical processes, causing leaching
from bioretention cells during subsequent storms (as was proposed for the mid-October event).

Contrary to results found by Manka et al. (2016) and Hatt ef al. (2007), there was typically no signifi-
cant correlation between removal and either measure of antecedent conditions (see supplementary
data). The one exception was a slightly negative correlation between NO3-N removal by IWS treatment
and the 5-day antecedent rainfall (Spearman Rank Correlation Coefficient = —0.54). Thus, there is mini-
mal influence of wetting and drying periods on water quality. However, this study exhibited shorter dry
periods (longest dry period of 9 days) and the lack of correlation is consistent with work done by
Blecken et al. (2009) in which no effects were seen for dry periods shorter than 3 weeks. Work done
by Hatt et al. (2007) also utilized longer dry and wet periods in examining removal performance.
Further study on long term hydrologic implications of active control systems should be conducted to
determine further correlations between treatment and removal. It is possible that active controls
could be used to manage soil moisture more effectively during dry conditions, but this is an untested
hypothesis.

Overall comparison of treatments

Traditional FD and IWS treatments can be considered controls to compare the efficacy of VC and SM
treatments. FD and IWS represent the extremes of bioretention function, promoting aerobic and
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anaerobic conditions, respectively, and differential detention times. VC and SM treatments were
actively controlled, leading to more variable patterns of water release compared to FD and IWS,
and subsequent differences in storage times and soil moisture patterns. These trends were found to
influence water quality, being an explanatory factor for dissimilarities in metal and nutrient effluent
concentrations from the treatments.

Overall, deeper water storage zones lead to better anaerobic nutrient processing of nitrate (denitri-
fication), while shallower water storage zones allow for greater aerobic treatment and conversion of
NH7-N to NO3-N. In this study, this understanding played out by the FD treatments more effective at
performing nitrification (i.e. NH;-N concentration reductions were accomplished), while the TWS
treatment showed the most reduction in NO3N concentrations, indicating more denitrification
when compared to other treatments. The VC and SM treatments were found to be better at perform-
ing nitrification than the FD treatment but not better at performing denitrification than the IWS
treatment, that is, they were able to provide both nitrification and denitrification in moderation
(compared to other treatments). This provides some hope that continued scheme development for
actively controlled bioretention may lead to systems that can balance the conflicting aerobic and
anaerobic environments needed for fully processing nitrogen.

In terms of metals, the treatments largely performed similarly other than the IWS treatment
exported Mn?", and the VC treatment removing Cu®" with less efficiency. This resulted in a few
notable observations as to how active controls could influence metal concentrations (e.g. by effecting
redox potential). Similar results are evident with TSS removal being over 97%.

Although not a focus of this study, it should be noted that the IWS treatment was able to store
runoff from smaller rain events which would result in total runoff reduction. For fewer storms, SM
and VC treatments were also able to do the same as the threshold for active release was not reached.
The hydrologic implications of the various treatment types should be further studied to understand
how active controls can be used to balance volume reduction and water quality improvement. We
hypothesize that active controls will be able to meet these multiple objectives more effectively than
static systems.

CONCLUSIONS

This column study tested the use of active control systems, as compared to static designs, over a
9-week period by observing water quality improvements provided by each treatment. Historic weather
predictions were coupled with observed precipitation events to replicate weather conditions from
June and July 2017, which amounted to a total of 18 storm events. Most notable was the influence
of the treatments on nutrients. For nutrients in the static systems, the largely aerobic FD performed
best for NH;-N, while the more anaerobic environment provided by the IWS led to the best perform-
ance for NO3-N. Deeper media depths could remedy this issue in future implementation of IWS
treatment, that is, a larger aerobic zone above the IWS could be provided. As the optimum IWS
depth for water quality has not been explored in literature, these data suggest that balancing nitrifica-
tion and denitrification is critical and more scientifically informed IWS design is possible. The soil
moisture and volume control treatments were able to balance these two environments, removing
NH;-N by more than 40% and NO3-N by more than 73%. Differences between soil moisture and
volume control were minimal for nutrients. This suggests that active controlled systems may strike
a balance between traditional FD and IWS systems.

Numerous factors influenced the results of this research and should be considered in future
research. First, using one scheme per configuration targets only one control objective but having
multiple control objectives could further improve the effectiveness of active control. Second,
having a seepage port allows the columns to better mimic field conditions in a laboratory setting,
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but also results in biofouling and should be carefully monitored. Finally, Eastern Tennessee is subject
to frequent, hard to predict thunderstorms in summer months which could have affected the rainfall
forecast data used herein. Using rainfall data from easier to predict seasons may affect the results of
the study.

Future research into actively controlled bioretention systems should include more hydrologic
quantification of bioretention systems outfitted with this technology in both laboratory and field-
scale studies. This should be coupled with further development of active control schemes to balance
water quality and hydrologic objectives using soil moisture readings at variable media depths and by
incorporating depth sensor measurements. The use of weather predictions in designing schemes for
active control systems is critical, and additional study should be performed to compare preemptive
control based on weather predictions to more adaptive control during storm events. That is,
if retention time is a critical treatment consideration, can it be further optimized by considering
uncertainties in weather prediction? Despite these questions, active control systems show promise
for the future of designing more efficient bioretention systems that are adaptive to external and
internal environmental processes.
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