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ABSTRACT

This research aims to quantify the spatial pattern of urban land use/land cover (LULC) change while considering environmental effects. This

paper integrates historical Landsat imagery, The Environment for Visualizing Images (ENVI), geographical information system (GIS), and socio-

economic data to determine the spatial–temporal urban LULC dynamics and the conversion of LULC in response to the rapid urbanization

from 1992 to 2022. Principle component analysis and multiple linear regression are used to determine and model the relationship between

the socioeconomic factors and the changes for identifying the driving forces. The results indicate that impervious surfaces have exponentially

increased, expanding more than two times from 2,348 to 4,795 km2, in contrast to bare lands, which drastically declined by 95%, from 1,888

to 87 km2. Water bodies have always been relatively fewer, at approximately 100 km2. In addition, the majority of farmland in Jinan City is

concentrated in the northern region with a steady area in the range of 2,100–2,900 km2, while the majority of woodland located in the

southern region declined from 3,774.52 km2 (37%) to 3,088.28 km2 (30%). Economic development, population growth, and climate change

are the primary factors that have an obvious impact on LULC changes.
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HIGHLIGHTS

• This paper integrates remote sensing images, ENVI, geographical information system, and socioeconomic data to determine the spatial–

temporal urban land use/land cover.

• Principle component analysis and multiple linear regression are used to determine the relationship between the socioeconomic factors

and the changes for identifying the driving forces.

• The results indicate a rocketing increase of impervious surfaces, which expanded more than two times from 2,348 to 4,795 km2.
1. INTRODUCTION

The alteration of land use/land cover (LULC) is the most direct indication of the impact of human activities on the Earth’s
surface system and plays a crucial role in the process of global environmental change (Wulder et al. 2008; Mooney et al.
2013; Lawler et al. 2014). Through interactions with the biosphere and atmosphere, human activities directly or indirectly
influence surface albedo, surface energy, surface roughness, and evapotranspiration, leading to significant effects on the
surface radiation energy balance, biogeochemical cycles, and ecosystem services (Deng et al. 2014; Zhu & Woodcock
2014). Additionally, LULC is a critical factor in determining human responses to global change and serves as a vital

input parameter for simulating global climate and biogeochemical effects. Understanding its spatio-temporal process
and dynamic mechanism, and accurately measuring and simulating its changes, have become top priorities in scientific
research (Jin et al. 2019; Debnath et al. 2022; Gaur & Singh 2023). The alteration of LULC patterns can result from a

plethora of driving forces, including urbanization, economic growth, and natural calamities. As a result, it is imperative
to study the changes in LULC at both the temporal and spatial scales to gain a comprehensive understanding of the under-
lying mechanisms driving these changes. The temporal analysis focuses on the examination of LULC changes over time,

including the evolution of the extent and distribution of various LULC types. Contrarily, the spatial analysis examines how
various LULC types are arranged and patterned, as well as how they relate to one another. In China, research on LULC
has primarily focused on examining the changing patterns, driving mechanisms, and environmental impacts of land use at
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the regional level (Wear & Bolstad 1998; Yu & Yang 2002; Hietel et al. 2004). The selected areas typically fall into two

main categories. The first category comprises ‘fragile areas’ that are characterized by vulnerable ecological environments,
which are often found in unique geographic locations such as coastal areas (Zhu et al. 2022), plateaus (Wang et al. 2022),
or delta regions (Zhang et al. 2020). The second category includes ‘hot spot areas’ with high levels of human activities and

natural drivers, which are often found in international metropolises such as Beijing, Shanghai, or Guangzhou (Yin et al.
2011; Ding & Shi 2013; Wu et al. 2016). The diverse purposes and patterns of land use lead to changes in LULC that are
influenced by various factors. Understanding the forces driving land-use change is crucial to addressing land system-related
challenges. Scholars have different views regarding these factors, generally classifying them into natural geographic and

socioeconomic factors (Sanderson et al. 2002; Hersperger & Bürgi 2009; Arifasihati 2016). Some researchers emphasize
demographic factors such as population growth (Nagy & Lockaby 2011; Tiitu 2018; Tavares et al. 2019), population den-
sity (Xu et al. 2013; De la Luz Hernández-Flores et al. 2017), and rural-to-urban migration as key drivers of LULC change

(Essien & Cyrus 2019; Islam et al. 2021). On a macro-scale, factors such as climate change and soil processes play sig-
nificant roles but tend to have long-term and stable effects, accumulating over time. At the regional level, socioeconomic
factors have a more pronounced impact (Stephen et al. 1993; Turner et al. 1993; Briassoulis & van der Straaten 2000; Xie

et al. 2005).
Remote sensing (RS) has become a reliable monitoring tool for LULC changes because of the increasingly diverse and high-

quality RS databases that meet various research needs. The availability of MODIS, Landsat, and Sentinel images has made RS

imagery interpretation research more efficient and cost-effective. Academic studies show that image processing and classifi-
cation methods have improved accuracy (Lu et al. 2011; Shao & Lunetta 2012; Thanh Noi & Kappas 2017; Toure et al.
2018). Numerous studies at local, national, continental, and global scales show that RS and spatial analysis in geographical
information systems (GISs) enable fast and efficient LULC change detection. Some studies examined local areas (Wu et al.
2006; Rawat & Kumar 2015; Tadese et al. 2020), while others examined national issues (Sánchez-Cuervo et al. 2012;
Schoeman et al. 2013). Overall, the amalgamation of RS and spatial analysis techniques in GISs, coupled with advancements
in image processing and classification techniques, has simplified and made the monitoring of land-use changes more cost-

effective.
Jinan, the capital of Shandong Province and one of China’s 14 mega cities, holds a strategic geographical position, situated

between the capital economic circle in the north, the Yangtze River Delta economic circle in the south, the Shandong Penin-

sula in the east, and Central China in the west. Benefiting from substantial national resources and favorable policies, Jinan has
experienced rapid development in recent years, becoming a prominent example of swift urbanization and industrialization
over the last three decades. In 2022, Jinan’s gross domestic product (GDP) grew by 3.1% year-on-year and the economic
growth rate is 0.1% higher than the national average rate, which ranks eighth among all cities.

While research on land-use change is prevalent, the current studies investigating the characteristics of land-use change in
China have predominantly centered on first-tier cities such as Beijing, Shanghai, and Guangzhou (Yin et al. 2011; Ding & Shi
2013; Wu et al. 2016), as well as on a national scale (Jiyuan et al. 2002; Li et al. 2018). Previous research on the Jinan region

mainly focused on various ecosystems and specific resources, such as examining the changes in groundwater supply in the
Jinan spring area, exploring the atmospheric particulate pollution and water pollution due to LULC (Sun et al. 2016). How-
ever, few studies have focused on long-term (30 years) LULC changes and analyses of driving factors in the Jinan region. In

addition, few scholars have taken policy factors into account in land research in the Jinan region. The policies and regu-
lations issued by the government are among the factors that cannot be ignored due to their impact on sudden land-use
changes (Feng & Wang 2021). Numerous scholars have highlighted the significance of institutional elements, particularly

local government policies (Xu et al. 2013; Kontgis et al. 2014; Nassar et al. 2014), rules and regulations (Dai et al. 2018;
Tiitu 2018; Feng & Wang 2022), and alternations in the ownership of land (Zhang et al. 2015; Adam 2019; Whiteside
2020), which can influence the trends of the development of cities. Thus, it is meaningful and valuable to fill the research
gaps and analyze the LULC changes over the past three decades, including the several factors and policies behind these

changes.
The study delivers detailed information on Jinan’s LULC change characteristics between 1992 and 2022. The land resource

management department can create planning strategies based on the quantitative and spatial variations of LULC. These strat-

egies aim to detect the regional properties of LULC variations and optimize the utilization of farmland, forest, bare land, and
impervious surfaces accordingly. In addition, farmland and woodland should be protected to encourage sustainable develop-
ment in Jinan, lessen farmland fragmentation, and enhance the woodlands in terms of quality (refers to condition and
://iwa.silverchair.com/aqua/article-pdf/73/3/584/1392968/jws0730584.pdf
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characteristics of the woodland such as the health and diversity of tree species, the density of trees, and the age structure of

the forest) and quantity (refers to the extent or size of the woodland). Additionally, finding the main LULC driving factors can
spur land management organizations to develop focused land control plans. It is anticipated that the study’s findings will
deepen our understanding of how the changes take place and what impact they have, offering insightful information for effi-

cient land resource management and planning. Hence, the primary goals of this paper are (i) to analyze and depict the
primary LULC changes in the Jinan region over a 30-year period beginning in 1992; (ii) to investigate the impact of major
driving factors, such as GDP or population, on these LULC changes; and (iii) to assess the key implications of these changes
by principle component analysis (PCA), analyzing them in the context of national and local policies.
2. STUDY AREA AND DATASETS

2.1. Study area

Jinan (36° 400 N, 116° 570 E) is the provincial capital of Shandong (Figure 1). It is situated in the province of Shandong’s north-
western region. The city is located in a region that divides the Yellow River valley from the northern foothills of the Taishan
Massif. Numerous artesian springs can be found throughout the metropolitan area thanks to the karst aquifers in limestone

formations that slope north to south. A humid continental climate and a normal isotherm of 3°C result in a yearly average
temperature of 14.70°C (58.5°F) for Jinan. This city has direct control over six districts (Shizhong, Lixia, Tianqiao, Huaiyin,
Licheng, and Changqing), one county-level city (Zhangqiu), and three counties (Pingyin, Jiyang, and Shanghe). All the dis-

tricts are depicted in Figure 1.

2.2. Dataset acquisition

The USGS Earth Explorer, accessible through the official website earthexplorer.gov, provides the essential satellite data
(Landsat-8 OLI and Landsat-5TM) required for analyzing changes in LULC in Jinan. The Landsat-5 TM data and the Land-
sat-8 OLI data offer a 30 m resolution. To ensure greater accuracy in determining the period, the period from April to

September is generally selected as the weather is generally good and the cloud content is low. Additionally, all satellite ima-
gery data include cloud cover below 5%, which can plummet differences between months and improve the precision of the
classification process by the random forest (RF) method. In this research, seven images were downloaded from USGS, which

are related to Landsat 5-TM (Type 1) and Landsat-8 OLI (Type 2). Information related to Band 1–Band 7 (B1–B7) of Type 1 is
used, whereas for Type 2, B1–B11 is applied (Table 1).

Data regarding these driving factors were derived from the Jinan Municipal Bureau of Statistics (http://jntj.jinan.gov.cn/).

Regional LULC change is caused by a variety of factors, according to research. LULC change is primarily impacted by the
development of cities and the economical states (Dewan & Yamaguchi 2009). High correlations between the amount of
developed land and arable land in a region and its economic growth have been found (Tendaupenyu et al. 2017). China
has a dual urban–rural structure, and as a result, the infrastructure, employment opportunities, educational attainment,

and access to healthcare in urban and rural areas differ significantly. These variations encourage rural residents to relocate
to urban areas, which is a primary factor in the change in regional LULC. Therefore, we selected the three main factors that
determine the population: permanent population (PP), urban population (UP), and population density (POD). As a result of

the economy’s growth and increasing salaries, the government invested in facilities and raised the living standards in urban
districts, which raised the area available for impervious surfaces and decreased the amount of farmland. Likewise, the expan-
sion of residential construction and infrastructure would substantially boost the Fixed Assets Investment (FAI). As a result, we

settled on GDP and FAI as the key factors at the level of economic development. In addition, climate change can also affect
LULC, such as the selection and scope of farmland and forest land. We selected annual temperature (AT) and annual rainfall
(AR) as the driving forces at the level of climate change. The annual GDP value-added signifies the level of economical

enhancement (unit: 109 yuan). Furthermore, other factors such as UP, population pressure (PP), POD, urban income (UI),
and farmers income (FI) are listed in Table 2.
3. METHODS

Figure 2 shows the methodology followed by this paper. After aquiring suitable Landsat images, we used ENVI 5.3 for image
pre-processing before using the Landsat images for classification. We then carried out the classification and spatial analysis to
describe the spatio-temporal pattern of LULC in Jinan City in 1992–2022. The relationship between the change of LULC and
om http://iwa.silverchair.com/aqua/article-pdf/73/3/584/1392968/jws0730584.pdf

4

http://jntj.jinan.gov.cn/


Figure 1 | Research area map.
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multiple factors was explored. We used PCA to reduce the dimensionality of the impacting factors and regression to study
how changes in the potential influential factors affected the evolution of LULC in Jinan City.

3.1. Image interpretation

The Jinan City region consists of farmland (wheat, rice, sugarcane, etc.), forest, urban and rural impervious surfaces, and
water bodies (rivers, canals, and ponds). Five LULC classes have been determined for this study after a review of the litera-
ture. Using the ENVI 5.3 Tool, the set of training area classes is created by selecting polygons for each class. The spectral

properties and responses are used to separate these LULC classes. The region of interest tool is utilized for assessing spectral
variations within defined pairs of LULC classes and demonstrated significant levels of separability between regions of
interest. Table 3 displays RS image interpretation symbols.
://iwa.silverchair.com/aqua/article-pdf/73/3/584/1392968/jws0730584.pdf



Table 2 | Statistical summary of the independent factors related to LULC variation

Factors Description

GDP The value-added of GDP each year, which represents economic development level (unit: 109 yuan)

PP The total registered population of the city each year, which represents population pressure (unit: 104)

UP People residing in urban area for each year, which represents urbanization level (unit: 104)

POD Resident population per unit area, which represents population pressure (unit: /km2)

FI Represents capability of improve living conditions of urban residents (unit: yuan)

UI Represents capability of improving living conditions of farmers (unit: yuan)

FAI Represents capability of fixed assets investment (unit: 109 yuan)

AT Represents the average AT (unit: °C)

AR Represents the average annual rainfall (unit: mm)

Table 1 | Comprehensive details of the Landsat satellite imagery applied in this research

Acquirement
date

Source of
data Dataset

Resolution
(m)

Cloud
cover Band

Geographical coordinate
system

Projection coordinate
system

27/05/1992 USGS Landsat 5-TM 30 ,5% B1–B7 GCS_WGS_1984 UTM_Zone_50N

USGS Landsat 5-TM 30 ,5% B1–B7 GCS_WGS_1984 UTM_Zone_50N

28/05/1998 USGS Landsat 5-TM 30 ,5% B1–B7 GCS_WGS_1984 UTM_Zone_50N

USGS Landsat 5-TM 30 ,5% B1–B7 GCS_WGS_1984 UTM_Zone_50N

23/05/2002 USGS Landsat 5-TM 30 ,5% B1–B7 GCS_WGS_1984 UTM_Zone_50N

USGS Landsat 5-TM 30 ,5% B1–B7 GCS_WGS_1984 UTM_Zone_50N

02/05/2006 USGS Landsat 5-TM 30 ,5% B1–B7 GCS_WGS_1984 UTM_Zone_50N

USGS Landsat 5-TM 30 ,5% B1–B7 GCS_WGS_1984 UTM_Zone_50N

16/05/2011 USGS Landsat 5-TM 30 ,5% B1–B7 GCS_WGS_1984 UTM_Zone_50N

USGS Landsat 5-TM 30 ,5% B1–B7 GCS_WGS_1984 UTM_Zone_50N

16/05/2017 USGS Landsat 8 OLI 30 ,5% B1–B11 GCS_WGS_1984 UTM_Zone_50N

USGS Landsat 8 OLI 30 ,5% B1–B11 GCS_WGS_1984 UTM_Zone_50N

30/05/2022 USGS Landsat 8 OLI 30 ,5% B1–B11 GCS_WGS_1984 UTM_Zone_50N

USGS Landsat 8 OLI 30 ,5% B1–B11 GCS_WGS_1984 UTM_Zone_50N
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3.2. Preprocessing stage of images

Due to the errors of the sensor itself and the refraction or absorption of the solar radiation entering the atmosphere, all of the

factors produce different degrees of impact on the received signal of the sensor, so a series of preprocessing steps should be
performed before applying the RS images of the study area, to improve the accuracy of the interpretation. In this study, we
used ENVI 5.3 for image processing, which contains several steps: radiation calibration, atmospheric correction, image

mosaic, and image cropping. In Figure 2, the entire LULC workflow is depicted.
Radiometric calibration, also referred to as radiometric correction, is essential for successfully converting unprocessed digi-

tal image data from satellite or aerial sensors to a typical physical scale based on known reflectance measurements acquired

from objects’ surfaces on the ground (Pourazar et al. 2019). This type of correction is essential for obtaining accurate quan-
titative assessments of imagery. The objective of atmospheric correction is to eliminate atmospheric effects from RS satellite
images, allowing for the retrieval of surface reflectance. This crucial process is essential for quantitative RS, as it reduces
atmospheric interference. Problems with atmospheric disturbance are resolved by using the Fast Line-of-Sight Atmospheric

Analysis of Spectral Hypercubes (FLAASH) atmospheric correction technique, which eliminates absorption brought on by
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Figure 2 | Workflow of LULC change based on RF classification.

Table 3 | RS image interpretation symbols

No.
Classification
types Implications Image example Image features

1 Farmland Land on which crops are grown,
including watered land, dry land,
grassland, shrubs

True color images are green and divided into
blocks of regular shapes by roads, generally
surrounded by residential areas

2 Impervious
surfaces

Includes urban sites and villages Standard false color images show red with white
dots and gray with blue, both in aggregates

3 Water bodies Including rivers, lakes, and ponds Dark blue on standard false color images, curved,
or irregularly shaped

4 Woodland Woodland and other forestlands Red and irregularly shaped on standard false
color images, distributed in mountainous areas

5 Bare land Low-coverage areas, unused land Irregular brownish-yellow color on true color
images, mostly located in mountainous areas
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the effects of CO2, O2, O3, and water vapor as well as the scattering brought on by molecules and aerosols (Chen et al. 2011).
When extracting information from imagery data obtained under different conditions based primarily on spectral features,
such as when detecting changes or mapping vegetation using extensive multi-temporal Landsat imagery data, atmospheric
://iwa.silverchair.com/aqua/article-pdf/73/3/584/1392968/jws0730584.pdf
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correction is particularly crucial. Image mosaic and image cropping are the processes of stitching multiple adjacent images

that contain parts of the study area into one image that completely covers the study area, and then cropping the desired area
according to the study boundary data.

Additionally, a single RS map cannot completely cover the whole study area, hence we stitch the two RS maps after radio-

metric calibration and FLAASH into one map that can completely cover the study area. And this function is achieved by the
function of SeamlessMosaic in ENVI 5.3. To create the final area map that can be used for the classification that follows, the
stitched image is cropped in accordance with the vector boundary of the study area.

3.3. RF classification

The RF model is just a classification method that we selected because it has demonstrated greater accuracy than other
popular classifiers (Granata et al. 2022a, 2022b; Di Nunno et al. 2023a, 2023b, 2023c), such as support vector machine

(SVM), K-nearest neighbor (KNN), or multi-label classification (MLC), in many applications (Speiser et al. 2019). When
classifying land cover using RS data, RF is currently regarded as one of the most popular techniques (Millard & Richard-
son 2015; Li et al. 2016; Teluguntla et al. 2018; Maxwell et al. 2019). The explanations for RF receiving significant

enthusiasm over the last two decades are as follows: (1) good performance by the outliers and noisier datasets; (2)
good performance with high-dimensional and multi-source datasets; (3) greater accuracy than other popular classifiers
as mentioned previously, such as SVM, KNN, or MLC, in many applications (Abdel-Rahman et al. 2014; Rodriguez-
Galiano & Chica-Rivas 2014); and (4) promoting the processing speed by selecting important variables (Van Beijma

et al. 2014). Generally speaking, the key advantages of the RF model are as follows: reduced overfitting, improved accu-
racy by combining the predictions of multiple trees in comparison with single decision trees, handling nonlinearity when
dealing with complex datasets, robustness to outliers by averaging of predictions from multiple trees for the reduction of

the impact of outliers, feature importance, handling missing values, reduction of bias values by averaging the predictions
of many trees with different initializations and training subsets, less hyperparameter tuning, and reduction of variance. In
supervised learning, the algorithm learns from a labeled dataset, where the input data are associated with corresponding

target labels or outcomes. The goal is to learn a mapping from inputs to outputs, so the algorithm can make predictions on
new, unseen data. RF is made up of several classifiers each of which contributes one vote to the most frequent class
assignment for the input vector (x),

ĈB
rf ¼ majority vote{ĉb(x)}

B (1)

where ĉb(x) is the prediction value of the bth tree.
RF differs significantly from the conventional classification tree due to the specificity provided by the fact that it is a mixture

of numerous classifiers. As a result, it should be viewed as a distinct classifier idea. RF creates more diverse trees by combin-
ing various training data subsets via bagging or bootstrapping (Breiman 2001), which also modifies the sample distribution of

the data used by the model, introduces noise, and improves the model’s generalization ability. During this process, a random
sample of the original dataset is used in place of the original data in this procedure (i.e., does not remove selected data from
the input sample to create the next subset). RF is an ensemble classification technique that employs a tree as its fundamental

classifier.

{h(x, Qk), k ¼ 1, . . . , } (2)

with x being the input vector and {Qk} being a random vector that is independently and uniformly distributed (Breiman
2001; Hastie et al. 2009). In addition, each tree grows without being pruned. After the tree has completed its growth,
only a few variables are generated at random for each node’s variables. As a result, certain data may be utilized

more than once in training the classifier, while other data may never be utilized. In other words, both the samples
and variables used are randomized, and this double randomization process is resistant to overfitting. By being more
resistant to subtle changes in the input data, the classifier becomes more stable. Additionally, the classification’s accuracy

is increased (Breiman 2001).
In this paper, we conducted RF by using ENVI software (Van der Linden et al. 2015), and all parameters are set as follows:

n_ Estimators¼ 400; Impurity Function: Gini Index; Minimum impurity threshold¼ 0; and Minimum number of samples¼ 1.
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3.4. Classification accuracy validation

The confusion matrix is a widely accepted evaluation tool in the field of LULC classification that provides a visual represen-
tation of the agreement between predicted and actual classifications. By using the confusion matrix, it is possible to offer a

quantitative measure of accuracy, providing the ability to compare results with other classifications or previous results
(Congalton 1991).

To ensure correctness, the ground truth data were matched to the categorized image. To assess categorization accuracy, the
user accuracy (UA) and producer accuracy (PA) were tested. The accuracy of the producer is determined by dividing the total

number of correctly categorized pixels. The inaccuracy of misclassified pixels, as well as misclassification into a different
class, was recorded. Furthermore, the user’s accuracy is a measurement of the individual class acquired from the pixels classi-
fied in the same group (Voss & Sugumaran 2008). The confusion matrix produced for UA and PA was used to calculate the

total accuracy. UA, PA, and overall accuracy (OA) are described as follows.
UA and PA are two important performance metrics that are derived from the confusion matrix in the evaluation of LULC

classification accuracy. UA is the percentage of samples that are correctly categorized by the classifier relative to the actual

sample class. It is calculated as the amount of correctly classified samples (i.e. true positives) divided by the total number of
samples (i.e. true positives plus false negatives). PA, on the other hand, is defined as the proportion of samples in a particular
class that was correctly classified by the classifier. It is calculated as the number of samples that were correctly categorized
(i.e. true positives) divided by the total number of samples that were classified as that particular class (i.e. true positives plus

false positives).
Both UA and PA are commonly used to evaluate the performance of LULC classification algorithms. However, it is impor-

tant to note that while UA measures the OA of the classification, PA provides a class-specific evaluation of accuracy.

User accuracy (UA) ¼ (Number of true positivesþNumber of true negatives)
(Number of true positivesþNumber of false negatives)

� 100 (3)

Producer accuracy (PA) ¼ Number of true positives
(Number of true positivesþNumber of false positives)

� 100 (4)

where true positives represent the count of pixels that are correctly classified as positive. True negatives denote the quantity of
pixels that are accurately classified as negative. False negatives refer to the pixels that are incorrectly classified as negative, but
they should have been classified as positive. Additionally, false positives represent the pixels that are incorrectly classified as

positive, but they should have been classified as negative. Total pixels refer to the total number of pixels in the image

Overall accuracy (OA) ¼ Total number of correct classified
Total number of pixels

� 100 (5)

The Kappa coefficient (KC) is an additional metric used to compare training pixels with ground truth data. It measures the
extent of agreement beyond chance by comparing the observed agreement between classification results and reference data to

the expected agreement. Kappa values range from þ1.0 to �1.0, with values above 0.7 indicating substantial agreement
(Hastie et al. 2009). A value of zero suggests no correlation in categorization. Typically, the KC is used alongside other metrics
such as OA, UA, and PA to offer a comprehensive evaluation.

Kappa coefficient (KC) ¼
n
Pp
i¼1

xii �
Pp
i¼1

xi0x0i

n2 � Pp
i¼1

xi0x0i

(6)

where n is the total number of pixels; p is the number of classes;
P

xii is the total number of elements of the confusion matrix;P
xi0 is the sum of row i; and

P
x0i is the sum of column i.
://iwa.silverchair.com/aqua/article-pdf/73/3/584/1392968/jws0730584.pdf
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3.5. Method of LULC change

For the analysis of various types of land-use change and to determine its rate, we employed four indicators. These indicators
include the net total change area, annual change area, annual change rate, and dynamic degree.

In order to compute the annual change rate (Ki) related to land-use type i, the following equation is expressed:

Ki ¼
Dsi,j
si

� 1
t
� 100% (7)

In the given context, si represents the initial area of land-use type i at the beginning of monitoring. Δs(i,j) denotes the total net
area of changes between land-use types, where j changes to or from land-use type i during the time period t. Ki is calculated
for the case study over the time period t.

Equation (8) is utilized to calculate the dynamic degree (L) of i:

L ¼

Pn
i¼1

jsi � sjj
Pn
i¼1

si
� 1

t
� 100% (8)

where si represents the area of a specific land type at the start of the study, while sj represents the area of the same land type at

the end of the study. The variable n corresponds to the total number of land types (n¼ 1,2,3,…), and t represents the time dur-
ation of the case study.

3.6. Land-use transfer matrix

In this research, the areas of six distinct LULC types were utilized to compute the land-use transfer matrices for seven time

periods from 1992 to 2022 in Jinan City. The land-use transfer matrix (LUTM) (Van der Linden et al. 2015) is an extension of
the Markov transfer matrix, initially used to describe transitions from one state to another over a specific period. It has been
widely employed in academic literature to gain deeper insights into the evolution of land-use change (Congalton 1991) and is

particularly useful in describing the conversions between various land-use types (Voss & Sugumaran 2008). The calculation
was performed using ArcGIS 10.2.2, and the LUTM calculation equation is provided as follows:

Sij ¼
s11 s12 . . .
s21 s22 . . .
. . . . . . . . .

s1n
s2n
. . .

sn1 sn2 . . . snn

2
664

3
775 (9)

where Sij represents the area transformed from land-use type i to land-use type j. At the start and the end of the study period,

i and j denote the specific land-use type, and n denotes the total number of land-use types. The LUTM (introduced as Equation
(9)) is a two-dimensional matrix obtained based on the changes in land-cover status at different times in the same region. By
analyzing the obtained transfer matrix, we can obtain the mutual transformation between two different land types in different

time periods. It describes the land types that have undergone changes in different years, as well as the location and area of the
changes. LUTM reflects not only the static fixed area and time data of the various land types mentioned above but also a more
abundant initial area transfer of each land type and the final area transfer of each land type. In most cases, a certain type of
land is not simply converted to another land type, but rather to multiple land types.

3.7. Driving forces of LULC change

The interaction between human activity and the natural environment leads to land-use change, which is a crucial aspect of
regional sustainable development (Van Asselen & Verburg 2013; Ge et al. 2019). Human activities have surpassed the con-
straints imposed by the physical geography of the planet by implementing advanced farming methods and engineering

solutions, such as land consolidation, which have changed the geographic distribution and type of regional LULC (Zhou
et al. 2020). Land-use change is primarily driven by human activities related to urbanization, population rise, and LULC man-
agement policies. These factors have indirect effects on LULC (Du et al. 2014). The PCA was employed to calculate the
om http://iwa.silverchair.com/aqua/article-pdf/73/3/584/1392968/jws0730584.pdf
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principal component using the following variables: total annual precipitation, mean temperature, GDP, total population, UP,

resident population per unit area, urban people’s income, farmer income, and fixed asset investment (Table 2). During the
period 1992–2022, we collected each dataset on an annual basis for the purposes of pre-processing. SPSS software was uti-
lized to conduct the PCA.

This study introduces a ‘two-step’ analytical approach. Initially, all identified factors from the general LULC analysis
undergo a PCA. In the second step, the key variables are identified within the significant dimensions, and stepwise regression
modeling is conducted to assess the interaction between typical LULC and these essential variables.

3.7.1. Principal component analysis

To examine the factors influencing LULC change, we included a range of socioeconomic and natural climate indicators.

However, there might be significant correlations (informational overlap) among these various indicators. To address this
issue, we initially filtered the variables using PCA.

PCA is a multivariate statistical technique used to assess the level of correlation among different variables. It replaces the

initial variables with a new set of composite variables that are uncorrelated by combining multiple variables with specific
correlations. The primary goal is to retain as much information as possible while reducing the dimensionality of the variable
dataset. This is achieved by orthogonally transforming a set of potentially correlated variables into a new set of linearly inde-
pendent variables, with the top few variables retaining the majority of the variance present in the original variables (Li et al.
2021). These transformed variables are referred to as principal components and are used in subsequent analyses.

In mathematical terms, let us assume that there are n samples of x, and each sample consists of p variables. We can rep-
resent this as a matrix of dimensions n� p.

X ¼
x11 x12 . . .
x21 x22 . . .
. . . . . . . . .

x1p
x2p
. . .

xn1 xn2 . . . xnp

2
664

3
775 (10)

These comprehensive indices were obtained by applying a linear transformation to this variable, respectively: z1, z2,…, zm
(m� p)

z1 ¼ l11x1 þ l12x2 þ . . .þ l1pxp
z2 ¼ l21x1 þ l22x2 þ . . .þ l2pxp
. . .
zm ¼ lm1x1 þ lm2x2 þ . . .þ lmpxp

8>><
>>:

(11)

In this equation, the coefficient lij is defined with the aid of two main principles: (i) zi is not influenced by zj and (ii) z1
exhibits the highest variance among all linear combinations, while zm displays the lowest variance. The new variables (i.e.,
z1, z2, and z3) represent the first, second, and third principal components of the original variables. In practical applications,
to simplify the relationship between variables, the top few principal components with the highest variances are often utilized.

3.8. Multiple linear regression analysis

The multiple stepwise technique is a regression model fitting method that involves an automated procedure to repeatedly per-

form regression analysis and significance testing on explanatory variables. Only those variables that significantly contribute to
improving the model are ultimately retained. This is accomplished by evaluating a group of explanatory factors for addition or
deletion in accordance with some predetermined criteria. The following is the multiple regression model:

Y ¼ bþ a1X1 þ a2X2 þ � � � þ anXn (12)

where α1, α2, … , αn denote the weighting coefficients, and β is introduced as a bias/constant term. This research used SPSS
software to implement PCA and the multiple linear regression analysis.

3.9. Classification accuracy

The reliability of the classification results is shown by the accuracy of the classification. The OA is more than 90%, and the
Kappa value is more than 85. Thus, the accuracy results show that the results of the classification are highly reliable (Table 4).
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Table 4 | LULC/land cover classification accuracy from 1992 to 2022

Classification category User accuracy Producers’ accuracy

Impervious surfaces [84.85%, 96.43%] [97.91%, 100%]

Water bodies [99.15%, 100%] [84.31%, 98.59%]

Farmland [66.41%, 99.42%] [86.99%, 100%]

Woodland [80.57%, 99.17%] [91.26%, 99.97%]

Bare land [74.48%, 100%] [20%, 100%]

OA [90.7561%, 95.1314%] KC
[0.8686, 0.9141]
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3.10. Quantity and spatial distribution of LULC

Over the past three decades, there have been substantial changes in the LULC of Jinan City. Notably, there has been a sig-

nificant increase in the impervious surface area, while the area of bare land has decreased, as can be determined from Table 5
and the spatial distribution map (Figure 3). The area of bare land has experienced fluctuations, initially increasing and then
decreasing, resulting in an overall area decrease. The farmland also experienced fluctuations, while the total area remained

stable during 30 years. The overall area of the water body remained stable and almost unchanged; the Woodland shows a
slight downward trend. In addition, the average rate of change over these 30 years was ordered as impervious surface.
bare land.water.woodland. farmland.

For these six time periods, their dynamic degree is ranked as 2002–2006. 1998–2002. 2017–2022. 1992–1998. 2006–
2011. 2011–2017 (Table 6). Among them, the dynamic degree is the highest in 2002–2006 (7.35%), indicating that the
changes in various types of LULC are the greatest during this time period, and the degree of change in bare land is significant

(�74%), which may be due to the government’s vigorous construction of houses or factories on bare land during this period of
accelerated urbanization. On the contrary, the period from 2011 to 2017 showed the least dynamic attitude (0.32%), indicat-
ing that there was little change in the various LULC types during this period.

The area of impervious surfaces showed a sharp and upward trend between 1992 and 2022 (Table 5 and Figure 4). In 1992,

the area of impervious surfaces only accounted for 2,348 km2, and it rose to 4,795 km2 in 2022. This increase is likely due to
the rapid urbanization and economic development in the region, which has led to an increase in the demand for land for
commercial and residential purposes. To compensate for this expansion, the areas of bare land and woodland reduced by

1,800 and 686 km2, respectively. In 1992, impervious surfaces mainly occupied two districts (Lixia District and Shizhong Dis-
trict, about 36°400N, 117°E), which have continuously expanded over the past 30 years. In 2022, this area almost span the
entire central administrative region (Huaiying District, Shizhong District, Lixia District, Licheng District, and Zhangqiu Dis-

trict). The construction area of Laiwu District and Gangcheng District, which are located in the southeast direction, has
continuously expanded, forming the second largest impervious surface area except for the central area.
Table 5 | Area for each type of LULC/land cover

Area for each type of LULC/land cover(km2)

Classification Category

Research year

1992 1998 2002 2006 2011 2017 2022

Impervious surfaces 2,348.85 2,663.99 2,959.29 3,465.73 3,671.33 4,059.49 4,795.35

Water bodies 81.36 90.89 77.00 121.05 89.32 117.87 127.40

Farmland 2,109.92 2,401.25 1,933.30 2,883.48 2,812.43 2,562.78 2,103.97

Woodland 3,774.52 3,861.84 3,587.98 3,314.91 3,083.91 3,043.83 3,088.28

Bare land 1,888.05 1,184.74 1,645.15 421.11 550.10 422.30 91.29

Total 10,202.71 10,202.71 10,202.71 10,206.28 10,207.09 10,206.27 10,206.28
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Figure 3 | Land-use maps of Jinan province in the reference years.
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Table 6 | LULC factors of change in the reference years

Research year Factors of change Impervious surfaces Water bodies Farmland Woodland Bare land

1992–1998 Amount (km2) 315.14 9.53 291.33 87.32 � 703.31
Rate (km2/year) 52.52 1.59 48.55 14.55 � 117.22
Ki 13.42% 11.71% 13.81% 2.31% � 37.25%
L 2.30%

1998–2002 Amount (km2) 295.29 � 13.89 � 467.95 � 273.86 460.41
Rate (km2/year) 73.82 � 3.47 � 116.99 � 68.47 115.10
Ki 11.08% � 3.82% � 19.49% � 7.09% 38.86%
L 3.70%

2002–2006 Amount (km2) 506.45 44.06 950.18 � 273.07 � 1,227.61
Rate (km2/year) 126.61 11.01 237.54 � 68.27 � 306.90
Ki 17.11% 57.22% 49.15% � 7.61% � 74.62%
L 7.35%

2006–2011 Amount (km2) 205.59 � 31.73 � 71.05 � 231.00 128.18
Rate (km2/year) 41.12 � 6.35 � 14.21 � 46.20 25.64
Ki 5.93% � 26.21% � 2.46% � 6.97% 30.70%
L 1.90%

2011–2017 Amount (km2) 388.17 28.55 � 249.65 � 40.09 � 126.98
Rate (km2/year) 64.69 4.76 � 41.61 � 6.68 � 21.16
Ki 10.57% 31.96% � 8.88% � 1.30% � 23.27%
L 0.32%

2017–2022 Amount (km2) 735.85 9.53 � 458.82 44.45 � 331.02
Rate (km2/year) 147.17 1.91 � 91.76 8.89 � 66.20
Ki 18.13% 1.62% � 17.90% 1.46% � 79.05%
L 3.10%
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During the study period, 45.63 km2 of water area was converted to other uses, primarily forest, construction, and agricul-
tural land. Conversely, 91.67 km2 of water surface was created primarily from impervious surface, including a large lake, a
network of channels and dams, serving various urban development and water management purposes. Consequently, despite
fluctuations over time, the water surface area grew from 81.36 km2 in 1992 to 127.40 km2 in 2022, with a mean that has

always been relatively small at approximately 100 km2 (Table 5).
The evolution of bare land area within the studied region reveals a nuanced landscape transformation. In 1992, the expanse

of bare land covered 1,888.05 km2, signifying a substantial portion of the terrain. By 1998, this area witnessed a reduction to

1,184.74 km2, hinting at shifts in land use or possible natural vegetation regrowth. Notably, in 2002, the bare land area
increased to 1,645.15 km2, suggesting land cover adjustments. However, a pivotal transformation occurred in 2006 when
the bare land area dramatically plummeted to a mere 421.11 km2. This substantial decrease may be attributed to urban devel-

opment, reforestation, or alternative land utilization strategies. By 2011, the bare land area showed a slight increase, reaching
550.10 km2, implying continued land-use changes. In 2017, the area experienced a modest reduction, lowering it to
422.30 km2, and it continuously decreased to 91.29 km2 in 2022. This pronounced reduction likely reflects substantial

shifts in land use, possibly driven by urbanization, agricultural expansion, or deliberate afforestation efforts.
There was a fluctuation trend in woodland over the last 30 years (Figure 4). The area grew from 1992 to 1998, and it

decreased slowly from 1998 to 2011 to achieve a stable line until 2022. Over the past 30 years, the total woodland area
that was converted to other types of land was 686 km2, mainly for impervious surfaces. Therefore, from accounting for the

biggest part of about 37% of the total area in 1992, Jinan province had approximately 30% area in 2022 (Table 5). This decline
is most likely caused by the growth of urban areas, the creation of infrastructure, and the commercial exploitation of forests.
However, over the past 30 years, the primary spatial distribution of woodland in Jinan City has remained largely unchanged.

The majority of woodland is concentrated in the southern parts of the Changqing, Licheng, Zhangqiu, and Laiwu Districts.
Further investigation revealed that the southern region is predominantly mountainous, with forested areas covering a signifi-
cant portion of the landscape.
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Figure 4 | The areas of different types of LULC from 1992 to 2022.
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Unlike the abovementioned types of land, farmland experienced growth as well as decline, and fluctuated over the last 30
years (Figure 4). But the area between the beginning and the end of the studied period was almost the same, changing from

2,110 to 2,104 km2, respectively, with a maximum in 2006–2011 of around 2,800–2,900 km2. The majority of the cultivated
land in Jinan City is concentrated in the northern region, where it is interspersed with clusters of impervious surfaces. While
the patch-like areas of cultivated land have gradually expanded over time, the distribution remains primarily focused in the

northern area.
3.11. LULC transition characteristics

The LULC transfer matrix of Jinan City was obtained by comparing the results of LULC classification in seven different

periods using ENVI software, as shown in Table 6 and Figure 5. Over the past 30 years, all types of land have transformed.
Between 1992 and 1998, approximately 14% of the woodland had been converted to other land types, such as impervious

surfaces, farmland, and bare land (Table 7). Some parts of the bare land were transformed into impervious surfaces and wood-

land, while farmland was mainly converted to woodland and impervious surfaces. During this period, the area of concessions
for bare land was lower than the area of transfers, amounting to approximately 700 km2, while the area of concessions for
other types of land was higher than the area of transfers. In particular, both farmland and impervious surface areas increased
by approximately 13%.

Between 2002 and 2006, the largest gap between inward and outward transfers occurred for bare land, resulting in a
decrease of approximately 12% in its area. Farmland, impervious surfaces, and water were converted into each other, and
the transfer volume for these three land types was higher than the transfer out. By contrast, the transfer volume for

woodland was lower than the transfer out, with most of it being converted to impervious surfaces. As a result, the area of
bare land and woodland decreased during this period, with a portion of the reduction being transformed into the other
three land types.
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Figure 5 | Sankey diagram of the LULC transfer matrix.
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During the three time periods of 2006–2011, 2011–2017, and 2017–2022, the area of land transfer for all types was less,

except for the increase of impervious surfaces in the last period. The transfer area of impervious surfaces exceeded the trans-
fer out area, resulting in an 18% increase in their total area between 2017 and 2022. During these three time periods, the total
area of impervious surfaces increased, while the areas of farmland decreased. These types of land were converted into each
other, with the Sankey diagram indicating that the transfer area for various types of land during the 2006–2017 period was

lower than that of the other research periods.

3.12. Driving force of LULC

3.12.1. Economic and population development

We used nine factors, such as GDP and population, as input data for the 30 consecutive years from 1992 to 2022, in other

words, 9 * 30 sets of data were used as raw data for PCA input. Afterward, all data were standardized in SPSS, followed by the
Kaiser–Meyer–Olkin (KMO) and Bartlett tests. The results of this experiment were KMO¼ 0.775. 0.5 and P, 0.05. There-
fore, it was concluded that these 30 sets of data have structural validity and can be used for PCA.

Using PCA, each of the nine indicators’ change data could be reduced to two components (Table 8). The first principal
component (F1) is a description of economic growth, reflecting primarily the changes in the GDP (X1), UI (X5), FI (X6),
PP (X2), UP (X3), and POD (X4). The second principal component (F2) primarily reflects AT (X8) and AR (X9) to charac-

terize regional climate change.
Multiple linear regression analysis (Table 9) could be used to derive the statistical model of the relationship between the

changes in the land area and the primary driving factors. The significance test was passed by the driving relationship

models of every kind of land. The particular models demonstrated the following.
This reflects the previous expansion of construction areas, which occurred concurrently with the swift growth of the

national economy and the consistent acceleration of Jinan’s population growth.
Water area exhibited a negative (reverse) correlation with economic factors (F1) and a positive correlation with climate

factors (F2), with F1 having the most significant influence; however, it is not significant, nor is it significant for farmland.
Therefore, we will not discuss it.

Some traditional water bodies are near urban and rural construction sites, although their impact is not expected to be sub-

stantial. Conversely, climate change-related factors, such as increased precipitation, will likely result in denser water bodies in
Jinan. Farmland areas had a negative correlation with the economy (F1) and a positive correlation with climate (F2). It was
influenced primarily by economic expansion. The woodland area had a positive correlation with climate change and a
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Table 7 | LULC transition matrix for 1992–2022

1992

1998

Bare land Impervious surface Farmland Water Woodland Total

Bare land 8.38% 1.36% 0.18% 0.00% 1.17% 11.10%

Impervious surfaces 5.48% 11.45% 2.27% 0.08% 7.13% 26.40%

Farmland 1.27% 4.10% 13.19% 0.03% 4.57% 23.11%

Water bodies 0.00% 0.23% 0.10% 0.52% 0.06% 0.88%

Woodland 3.32% 5.97% 4.54% 0.17% 24.44% 38.39%

Total 18.46% 23.10% 20.27% 0.79% 37.38% 100.00%

1998 2002

Bare land 8.12% 4.53% 1.04% 0.00% 2.42% 16.11%

Impervious surfaces 1.96% 16.79% 2.98% 0.24% 7.15% 29.11%

Farmland 0.16% 1.72% 11.88% 0.05% 4.63% 18.42%

Water bodies 0.00% 0.13% 0.05% 0.54% 0.08% 0.80%

Woodland 0.90% 3.25% 7.17% 0.05% 24.19% 35.55%

Total 11.14% 26.41% 23.11% 0.88% 38.46% 100.00%

2006 2002

Bare/low-cover land 3.26% 0.40% 0.06% 0.00% 0.34% 4.07%

Impervious surfaces 7.56% 18.51% 2.72% 0.12% 5.50% 34.42%

Farmland 0.51% 4.95% 14.78% 0.03% 7.57% 27.84%

Water bodies 0.03% 0.37% 0.05% 0.63% 0.08% 1.15%

Woodland 4.76% 4.88% 0.81% 0.02% 22.06% 32.52%

Total 16.11% 29.11% 18.42% 0.80% 35.55% 100.00%

2006 2011

Bare land 2.07% 2.26% 0.05% 0.01% 0.94% 5.33%

Impervious surfaces 1.22% 23.07% 3.74% 0.20% 7.89% 36.12%

Farmland 0.11% 3.17% 22.84% 0.02% 1.30% 27.45%

Water bodies 0.00% 0.14% 0.01% 0.69% 0.04% 0.88%

Woodland 0.66% 5.78% 1.20% 0.22% 22.34% 30.22%

Total 4.07% 34.42% 27.84% 1.15% 32.52% 100.00%

2017 2011

Bare land 1.67% 1.64% 0.17% 0.00% 0.52% 4.01%

Impervious surfaces 2.71% 24.03% 5.03% 0.13% 7.96% 39.87%

Farmland 0.06% 4.07% 20.06% 0.01% 0.94% 25.14%

Water bodies 0.02% 0.26% 0.05% 0.72% 0.12% 1.15%

Woodland 0.87% 6.13% 2.14% 0.02% 20.67% 29.84%

Total 5.33% 36.12% 27.45% 0.88% 30.22% 100.00%

2022 2017

Bare land 0.29% 0.44% 0.13% 0.00% 0.12% 0.97%

Impervious surfaces 2.68% 32.41% 6.12% 0.21% 5.64% 47.06%

Farmland 0.17% 1.99% 17.50% 0.01% 0.66% 20.33%

Water bodies 0.00% 0.24% 0.03% 0.92% 0.06% 1.24%

Woodland 0.87% 4.79% 1.36% 0.02% 23.36% 30.39%

Total 4.01% 39.87% 25.14% 1.15% 29.84% 100.00%
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Table 8 | Component matrix of the PCA in this research

Factors Variables

Component

F1 F2

GDP X1 0.963 0.119

PP X2 0.905 0.071

UP X3 0.979 0.074

POD X4 0.986 �0.048

Urban Income (UI) X5 0.987 �0.048

Farmers Income (FI) X6 0.981 �0.073

Fixed Assets Investment (FAI) X7 0.979 �0.067

AT X8 0.039 �0.766

AR X9 0.015 0.795

Table 9 | Linear relationships between land change and PCA for various types of land

Impervious surfaces Water bodies Farmland Woodland Bare land

Y¼ 3,206.72þ
541.040 * F1
R2¼ 0.748, P, 0.05

Y¼ 95.99� 9.16 * F1þ
0.9 * F2
R2¼ 0.013, P. 0.05

Y¼ 2,482.23� 198.40 *
F1þ 41.527 * F1
R2¼ 0.046, P. 0.05

Y¼ 3,438.612� 2.99 *
F1þ 50.61 * F2
R2¼ 0.577, P, 0.05

Y¼ 979.17� 452.60 *
F1� 57.26 * F2
R2¼ 0.660, P, 0.05
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negative correlation with the economy (F1). This is a result of the traditional woodland being encroached upon by urban

development and impervious surface expansion, but this encroachment is not a significant factor. However, the expansion
of woodlands will be brought on by climate change, particularly the increase in precipitation. The area of bare land exhibited
a negative correlation with both the economy (F1) and climate change (F2), with F1 being the primary influencing factor. This
suggests that the development of construction or urban expansion utilized the bare land area, resulting in significant devel-

opment for construction purposes.
3.12.2. Government policies

LULC change can be considerably influenced by government planning and industrial development policies. China’s popu-
lation of 1.4 billion people faces significant food security and environmental challenges. The government has to encourage

economic growth, enhance the quality of life, and protect the environment. During periods of rapid economic expansion
and increasing population (Figure 6), housing, transportation, and industry will require more land. Large tracts of farmland
and undeveloped land have been occupied, while the amount of land devoted to construction has risen sharply (Figure 4).

During the period between 1992 and 2005, the rate of development in Jinan was relatively slow, resulting in a significant dis-
parity between the municipal districts and other cities. Thus, the area of the impervious surfaces grew swiftly in the municipal
districts (Figure 3 and Table 5), while it grew slowly in the remaining regions. The construction of Harmonious Jinan (COHJ)
was established in 2005. This city was included in both the ‘Eleventh Five-Year’ plan and the national development strategy.

The COHJ become a master plan for development and boosting the economy. Since 2015, Jinan has identified ‘building four
centers’ as the core strategic goal of its construction and development, clearly proposing to make Jinan an important regional
scientific and technological innovation center in the country. In addition, the ‘Three-Year Plan’ clearly proposed to accelerate

the interconnection of transportation facilities, strengthen regional ties and cooperation, and jointly build the ‘The Belt and
Road’ land. These policies promote industrial cooperation among cities along the Yellow River and jointly build demon-
stration belts for industrial cooperation, which will result in rapid development for the industrial and construction industries.
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Figure 6 | Variations of (a) economic factors and (b) populations in Jinan during 1992–2017. Note: GDP, gross domestic product and FAI, fixed
assets investment.
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The traditional planning concept for Jinan’s ‘central urban area’ has been replaced with ‘main city’. The eastern urban
area, western urban area, and old urban area are named Dongcheng, Xicheng, and Zhongcheng, respectively. As a conse-

quence, regional development primarily occurred in centralized areas, leading to the expansion of developed land in the
connecting zones. These changes illustrate the significant impact of policies on regional LULC modifications. The expan-
sion of developed land has resulted in a significant loss of bare land, which is now the largest of the four types of land
resources.

China has implemented several initiatives to preserve agricultural land to ensure food security. The most well-known pro-
gram is the ‘Basic Farmland Protection System,’ which ensures China has at least 1.2 million km2 of essential farmland
available for agriculture and the nation’s total food self-sufficiency. The alternative strategy, known as the ‘Balance of

Arable Land’ policy, requires that any conversion of arable land must be offset by the acquisition of land elsewhere. These
land policies have postponed the loss of arable land. In the current study, we found that between 1992 and 2022, a sizeable
percentage of impervious surfaces was converted into farmland (Tables 5 and 6). This finding is in line with other researchers’
://iwa.silverchair.com/aqua/article-pdf/73/3/584/1392968/jws0730584.pdf
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findings and may be explained by the terrain. Because Jinan is a plain region, it is more practical to convert developed land to

farmland. This was significantly dissimilar from other areas, such as Nairobi, Kenya, and the Bale Mountains, Ethiopia, where
farmland was primarily created by clearing existing vegetation (Du et al. 2014). Unused land should be carefully utilized, con-
sidering it is a vital resource for the land reserve (Li et al. 2021). In urban growth, it is crucial to regulate the construction of

new structures on farmed and unused land. Both the quantity and the quality of farmland should not be impacted, and the
balance of farmed land must be properly managed.

In terms of sustainable LULC management, Jinan will assume a greater number of economic development responsi-
bilities, thereby introducing new challenges. This study indicates that the main obstacles affecting the sustainable

utilization of land resources in Jinan are the rapid increase in impermeable water surface and the reduction of woodland
(Figure 4). Moreover, the economy (UP and GDP) and climate change were the primary drivers of LULC change
(Tables 7 and 8). Therefore, departments tasked with the sustainable management of Jinan should prioritize the reason-

able utilization of various types of impervious surfaces. Some new construction projects should first utilize existing
impervious surfaces, strictly control new land, fully utilize unused land, and minimize the occupation of arable land. Fur-
thermore, departments ought to regulate UP growth and guarantee an appropriate range of GDP increase to enhance the

use efficiency of impervious surfaces and the level of sustainable LULC. The policies of the government have a signifi-
cant impact on regional LULC. The implementation of sustainable LULC policies by land management departments in
Jinan will promote the effective utilization and long-term growth of regional land as well as enhance the level of regional

land management.
Future studies could use the data on LULC quantity and spatial distribution as the foundation for assessing Jinan’s LULC

sustainability. To evaluate the spatial variation in sustainable LULC in Jinan, the level of sustainable LULC will be deter-
mined. This will allow departments of land management to continue to develop their regional sustainable LULC policies.
4. DISCUSSION

This study employed RS imagery, GIS, and socioeconomic data to quantitatively assess LULC changes and distributions in
Jinan City from 1992 to 2022 (Figure 3). The findings highlight substantial urban expansion, with impervious surfaces more
than doubling while bare land decreased significantly (Table 5). Farmland predominantly clustered in the north, while

woodland, located primarily in the south, decreased over time. The analysis shows water bodies undergoing conversions
and expansions in the past three decades, with new surfaces such as lakes, channels, and dams primarily originating
from impervious areas to aid urban development and water management. However, these changes in water areas have
been relatively minor compared with the shifts in other land cover types. The main driving forces behind these changes

encompass economic development, population growth, and climate variability (Table 8). Notably, qualitative assessments
indicate that government policies, notably the ‘Construction of Harmonious Jinan,’ exerted a noteworthy influence on
LULC changes. Consequently, this research underscores the imperative for ecologically sound policies and sustainable

urban planning to mitigate adverse environmental consequences. This study employed methods such as supervised classi-
fication, PCA, and regression analysis, to construct a spatial database of evaluation factors based on seven time periods
from 1992 to 2022.

This study aligns harmoniously with the existing body of literature that has diligently examined the intricate facets of LULC
transformations and the underlying forces propelling them. The judicious amalgamation of RS imagery, GISs, and socioeco-
nomic data in deciphering the nuanced dynamics and conversions of LULC in response to urbanization reflects a

methodological continuity with analogous investigations conducted in various regions across China (Tian et al. 2014). In con-
gruence with prior research, the findings of this study underscore the pivotal roles played by economic development,
burgeoning population, and the strategic influence of government policies as primary drivers of LULC alterations (Wulder
et al. 2008). However, it is imperative to underscore the unique contribution of this study, which distinguishes itself by offer-

ing an intricate dissection of LULC transitions specifically within Jinan City. This contribution is marked by its meticulous
delineation of spatial patterns, the precise quantification of change magnitude, and the resounding emphasis on the exigency
of ecologically sensitive policies and sustainable urban planning, thereby enriching the scholarly discourse in this domain.

Compared with previous land-use studies, our approach exhibits notable distinctions in several pivotal aspects. Convention-
al supervised classification methods are conventionally utilized for land-use change classification, relying on prior knowledge
and sample training, yet they are vulnerable to the intricacies and noise inherent in RS data. By contrast, we have opted for
om http://iwa.silverchair.com/aqua/article-pdf/73/3/584/1392968/jws0730584.pdf
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the RF classification method, a machine learning technique renowned for its adeptness in handling large-scale RS data

(Abdel-Rahman et al. 2014; Rodriguez-Galiano & Chica-Rivas 2014; Tian et al. 2014). The RF method affords us the capa-
bility to glean intricate patterns and correlations from the data, consequently facilitating a more precise identification of
the driving forces behind land-use changes. Furthermore, we have applied PCA to pinpoint the principal influencing factors

(Jolliffe & Cadima 2016), then used multiple linear regression to explore the mechanisms by which these influencing factors
affect different types of LULC. The implementation of this amalgamated methodology augments our holistic comprehension
of the mechanisms governing land-use changes. Our study shares similarities with the research conducted by Yao et al.
(2021), as they also employed a similar theoretical framework. However, our study delves deeper within this framework

to conduct a more in-depth analysis of the relative importance of different factors, particularly with the support of PCA analy-
sis, to ascertain which factors hold greater influence in different time periods. This comparison highlights that our research
offers a more detailed and specific understanding of the driving mechanisms behind land-use change, further enriching the

application of the theoretical framework.
This study harnesses data derived from RS imagery, GISs, and socioeconomic factors. However, it is important to acknowl-

edge inherent data limitations regarding accuracy. Notably, the selected study period spans three decades, from 1992 to 2022,

potentially overlooking the intricate subtleties and fluctuations in LULC changes that could manifest over shorter time inter-
vals. Within this chosen timeframe, certain finer-grained temporal dynamics may not have received exhaustive scrutiny.
Additionally, this study falls short in conducting a comprehensive exploration of the specific environmental impacts and eco-

logical repercussions stemming from the observed LULC alterations. A more extensive analytical approach, encompassing
the assessment of effects on biodiversity, ecosystem services, and hydrological systems, could provide a more profound com-
prehension of the multifaceted environmental implications at hand. In the future, there is potential for advancements in RS
data accuracy and resolution, allowing for a more refined observation of land-change trends over shorter time intervals.

Emphasis will be placed on investigating the precise impacts of LULC changes on ecosystems. These multifaceted approaches
aim to deepen our comprehension of the environmental repercussions stemming from LULC changes, thereby providing
invaluable support for sustainable environmental management and policy development.
5. CONCLUSION

The availability of information regarding spatio-temporal land-use variation and city development status is crucial for effective
land-use projection and decision-making. However, in many urban districts, such as the city of Jinan, such data are often lim-
ited. In this study, LULC maps were derived from multi-temporal Landsat images, and spatial analysis techniques and
statistical analysis were employed to analyze the spatial–temporal patterns of land-use variation and the driving forces in

Jinan from 1992 to 2022.
The study findings revealed diverse trends in the changes of LULC types, with significant transitions observed from bare

land and woodland to other types, particularly an increase in impervious surfaces over the course of 30 years. From the pre-

sent research, it can be concluded that the impervious surfaces of Jinan expanded more than two times than previously. The
expansion rates were high and expanded from being concentrated only in two districts to being significantly displayed in each
district. Farmland and woodland were located in the northern and southern parts, respectively, and farmland experienced

fluctuations while still staying stable in 2022 compared with 1992. The factors affecting the LULC change in Jinan were
also discussed. The factors comprise the social economy (GDP and population) and climate. The economy accounts for
the main influencing factor in LULC changes.

Urban income, POD, and climate change are the primary drivers of the increase in developed land. Population agglomera-
tion is substantially affected by LULC patterns. When developing LULC policies, the Department of Land Management
ought to take into account rationally planning land resources to avoid excessive population concentration. When the Depart-
ment develops land development tactics, it is critical for it to concentrate on areas experiencing rapid LULC changes. To

ensure adequate reserve land, the Department should, if necessary, limit the rate of LULC transfer in an area of volatile
LULC change. In response to national low-carbon policies and to reduce harmful gas emissions, attention should also be
paid to the climate-influencing factors of urban areas. Further studies on these issues are required. For example, issues

such as the urban heat island effect, carbon emissions from impermeable surfaces, and the coupling relationship between
urban land change and urban development can provide a basis and reference for sustainable urban development from a
more comprehensive perspective. Researchers and stakeholders can refer to or base their further analyses on this
://iwa.silverchair.com/aqua/article-pdf/73/3/584/1392968/jws0730584.pdf
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information, which may require the support of futher information about LULC. They can also adjust certain parameters of

RFs to potentially improve classification accuracy. Additionally, they can apply PCA tests to other areas in combination
with other regression methods.
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