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ABSTRACT

The management of wastewater treatment plant (WWTP) and the assessment of uncertainty in its design are crucial from an environmental

engineering perspective. One of the key mechanisms in WWTP operation is activated sludge, which is related to the biological oxygen

demand (BOD) parameter. In the modeling of BOD, the conventional approach utilizing ordinary differential equations (ODEs) fails to incor-

porate the stochastic nature of this parameter, leading to a considerable level of uncertainty in the design of WWTP. To address this

issue, this study proposes a stochastic model that utilizes stochastic differential equations (SDEs) instead of ODE to simulate BOD activities

of microorganisms and wastewater flow rate (Q). The SDEs and integral Itô are solved using the Euler–Maruyama method for a period of 15

sequential days and the timespan of 2019–2020 for a WWTP in Tabriz City. SDE improves the design of WWTP facilities by identifying uncer-

tainties and enhancing reliability. This, in turn, increases the reliability of the technical structures within the WWTP and improves the

performance of its biological system. By considering the randomness of the problem, the proposed method significantly improves the results,

with an enhancement of 11.47 and 10.11% for the BOD and Q models, respectively.
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HIGHLIGHTS

• This study suggests using stochastic differential equations (SDEs) and the Euler–Maruyama method instead of ordinary differential

equations (ODEs) to model BOD and Q in WWTP design, addressing uncertainty.

• A 15-day simulation was conducted to evaluate the variations of BOD and Q pollution parameters in the biological section of WWTP for the

first time.
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GRAPHICAL ABSTRACT

ABBREVIATIONS

WWTP Wastewater treatment plant
BOD (or BOD5) Total 5-day biochemical oxygen demand
COD Total chemical oxygen demand
MLSS Mixed liquid suspended solids
SDE Stochastic differential equations
Q Flow rate of wastewater
ODE Ordinary differential equations
inf Sampled at the input of the biological reactor
eff Sampled at the effluent of the biological reactor
PH Potential of hydrogen
SS Suspended solids
TDS Total dissolved solids
TSS Total suspended solids
VSS Volatile suspended solids
EC Electrical conductivity

SYMBOLS

8 Reactor volume
T Air temperature
X Biomass concentration
Xu The final concentration of biomass
QR Return activated sludge flow rate
Qw Activated sludge effluent from the WWTP system
�Q The average flow rate
kd Endogenous decay coefficient
Se Effluent substrate concentration
S0 Influent substrate concentration
�S The average substrate concentration
y The cell efficiency factor
uc Mean cell residence time (MCRT)
r Sampled at returning sludge
W Wiener process
f The drift coefficient
g The diffusion coefficient
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a, b and c Numerical constant coefficients
St An explicit answer of the Black–Scholes equation
μ Mean of data
σ2 Variance of data

1. INTRODUCTION

Managing water resources for human societies requires the utilization of urban wastewater as a part of the sustainable water
cycle. Wastewater reuse has been acknowledged as a fundamental strategy in safeguarding water resources and providing sol-

utions for global water challenges (Wester et al. 2015; Gul et al. 2021). To achieve this objective, it is crucial to design close-to-
reality wastewater treatment plants (WWTP) acknowledging that the operation and performance of any WWTP are signifi-
cantly defined by the quality of both the untreated and treated effluents (Ahmadi et al. 2017; Nourani et al. 2018).

Therefore, it is necessary to establish a direct connection (by establishing a more precise scientific link) with the treatment
plant’s output for industrial, agricultural, public, or sanitary purposes in order to meet environmental standards and indi-
cators (Cresson & Sonner 2018). This will help assess uncertainty regarding physical and chemical parameters and

enhance productivity. However, modeling the performance of a WWTP is challenging due to the complexity of treatment
processes (Hanbay et al. 2008; Nourani et al. 2023a, 2023b). In order to enhance the design quality of treated wastewater,
it is crucial to monitor and stabilize the physical variables associated with the proper functioning of activated sludge in

WWTP. Consequently, applying stochastic mathematical equations to model sewage output, which can be considered a
form of pollution control problem, has the potential to minimize uncertainty and enhance the accuracy of the models. Advan-
cing our understanding of wastewater output can contribute significantly to resolving pollution control challenges.

The quality of the effluent of the WWTP undergoes a transformation through the activated sludge process, and this altera-

tion can be assessed by measuring the biological oxygen demand (BOD). Conceptual models with mathematical relationships
are commonly used to model BOD in the biological part of WWTP. However, there are two major problems that make mod-
eling difficult when it comes to the mathematical modeling of environmental systems based on the physics of the problem.

Firstly, the multitude of variables increases the number of options to be examined and the number of variables to be con-
sidered. Secondly, assessing uncertainty becomes challenging due to the intricate connections among the components
engaged in stochastic process modeling and the significant level of randomness involved. In order to model BOD and the

design of WWTP, ordinary differential equations (ODEs), the equations involving ordinary derivatives of a function, are typi-
cally used as mathematical solutions due to their ease of use (e.g., Diehl & Farås 2013; Mauritsson 2013). However, most
natural processes are stochastic in nature, and the uncertainty caused by randomness needs to be taken into account
when modeling such processes (Nourani et al. 2023a, 2023b). The ODE model alone cannot scientifically interpret the

true physics of the phenomenon so ignore the uncertainties. Therefore, using the ODE model, uncertainties in the simulated
real stochastic systems are disregarded (Compagnoni et al. 2023).

Numerical simulations, such as those performed using ODEs, often require accurate measurements or the adjustment of

mathematical models based on prototype measurements from material models (Wylie & Streeter 1978). There are three
classifications for hydrological/mathematical models: (1) black-box models, (2) conceptual models (sometimes called gray-
box models), and (3) physically based models. In the physical approach (sometimes called white-box models or theoretical

models), to estimate the output of a real system, it is necessary to pay attention to the inputs and the structure of the
system and also its governing physical laws. In such a way, the initial and boundary conditions serve as essential constraints
for solving differential equations that govern the modeling. Mathematical models based on a physical approach incorporate

uncertainty stemming from simplification and assumptions made during the modeling process. Additionally, they may be sus-
ceptible to uncertainty arising from the collected physical data. The simulation of a real system can be achieved by utilizing
the numerical model of the governing equations. For instance, in the analysis of activated sludge, the law of conservation of
mass is applied to the input and output components of the biological part of a WWTP where the governing equations in

WWTP design were of the ODE type (Metcalf 2003; Sin et al. 2009; Lin 2014). However, wastewater treatment using an acti-
vated sludge process involves a combination of mechanical, chemical, and biological actions, and can be monitored using
nonlinear and complete equations with discontinuous solutions (Mauritsson 2013).

To assess uncertainties, investigations in the field of designing and simulating real random phenomena have continued in
advanced mathematics on stochastic spaces by handling stochastic differential equations (SDEs) (Dexter et al. 2016). SDEs
are a better alternative to ODEs for simulating random processes by taking into account uncertainties as well (Kabouris &
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Georgakakos 1991). An SDE is a differential equation that is presented along with a random variable, such as white noise. In

this way, SDEs are used to describe Brownian Motion and Weiner Process. In SDE, one or more of the terms is a stochastic
process, resulting in a solution that is also a stochastic process. A stochastic model through SDEs includes random variables
that change over time. These variables can be described by a probability distribution. Stochastic modeling helps estimate vari-

ations in a system’s state and output (Ouldali et al. 1989). SDEs are widely used in complex modeling, such as in the physical
modeling of WWTP (e.g., Beck 1987; Browning et al. 2020). For instance, Harris (1977) investigated SDEs using Euler
equations for WWTP with the activated sludge system, considering daily data over 2 sequential days. His research was inno-
vative, and a stabilizing pool at the influent of the treatment plant was considered to apply a constant flow rate and eliminate

stochastic values. To simplify the simulation, most of the parameters and numerical values were considered constant.
However, the results showed a significant difference between the calculated and observed BOD. Given the alterations of
100 m3/day for the inflow rate and 240 mg/L for BOD, in the context of a 2-day scale investigation and the presence of

the scale effect in these computations, the error in the calculations was also noteworthy.
The current study utilized SDEs to analyze Brownian motion in simulating WWTP in Tabriz City. To solve the stochastic

processes of BOD and Q by SDE solution, the Îto integral and Euler–Maruyama method were used. The Îto integral analyses

a stochastic process with respect to Brownian motion within a bounded time interval [0, t] (Erfanian et al. 2016). Optimal
coefficients of SDE were extracted by comparing computational and observational data over 2 weeks (the longest modeling
run for BOD and Q variables of WWTP lasted 2 consecutive days, based on prior research by Harris (1977)). The application

of this method in the assessment of uncertainty in the activated sludge component is considered an innovation to the present
research. AWiener model using SDE was presented to check real data and measure pollutant biological parameters for short-
term changes in BOD and Q, and to assess uncertainties in the biological reactor section.

2. MATERIALS AND METHODS

2.1. Study site and data

The study examined the assessment of uncertainty in simulating BOD and Q agents in WWTP design, with a focus on SDE
solutions. Simulations ran from 2019 to 2020 for 15 days (for the first time), for the BOD pollution index and the amount of Q
changes in WWTP’s biological part in Tabriz City with an activated sludge system.

Tabriz is a developed city in Iran, known for its urbanization and industry. The Tabriz WWTP, a diffuser-aerated activated
sludge WWTP, is located 4 km to the west of Tabriz, on the southern side of the Aji-Chay River. This WWTP has been
designed and built specifically to treat the urban wastewater of 612,000 people. Its goal is to reduce pollution and provide

reusable treated wastewater for agricultural and industrial activities. The WWTP system in Tabriz, shown in Figure 1, consists
of two primary stages (physical treatment), followed by secondary treatment (biological treatment), and finally, disinfection.
The biological treatment process includes an activated sludge treatment unit, secondary sedimentation, anaerobic digestion

tanks, and sludge lagoons.
The WWTP has a designed annual average discharge of 1.5 m3 s�1, but the actual average discharge is 1.15 m3 s�1. Records

indicate that the maximum discharge on non-rainy days reaches 2.5 m3 s�1, while on rainy days, it can go up to 3.8 m3 s�1.
The influent concentrations of BOD and total chemical oxygen demand (COD) variables are 250 and 320 mg l�1, respect-

ively. The Tabriz City WWTP consists of physical, biological, and chemical treatment stages. The incoming sewage carries
suspended materials weighing 32,400 and 45,360 kg day�1, respectively. Table 1 presents various statistical characteristics
of WWTP’s pollution indexes. Also, as target parameters in SDE modeling, Figure 2 illustrates the daily fluctuations of

Qinf and Qeff to WWTP over a 1-year period (2019–2020).
To prevent critical conditions for the entrance of wastewater into the treatment plant, a controller instrument has been

designed and installed in the intake channel. This controller induces changes within a specific range to regulate the waste-

water load to the plant. Figure 3 depicts the daily time series of BOD and COD levels in the influent to the treatment
plant. Comparing the graph with precipitation data shows a noticeable decrease in pollution indicators. This decrease can
be attributed to the dilution of the incoming flow to the WWTP.

2.2. Stochastic differential equation

The probability space associated with a stochastic phenomenon is represented by a continuous path Wiener process within a
specific time interval W(ti), characterized by independent variables. As a result of the presence of Wiener processes in the
corresponding stochastic integral, the solution to these equations is not derivative-based concerning time (t), and typically,
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such equations are expressed in terms of stochastic integrals Îto. The Îto stochastic integral is a concept within stochastic
calculus that expands upon the Riemann–Stieltjes integral (which extends the Riemann integral to integrate functions with
respect to another function) to encompass stochastic processes. This integral is of great significance in the study of SDEs

and finds utility in various disciplines, such as finance, economics, and physics. By accounting for the stochastic nature
and volatility of the underlying process, the Îto stochastic integral is defined with respect to a continuous stochastic process.
It is employed to solve SDEs and analyze the behavior of stochastic processes (Fima 1999).

The general form of an SDE is presented in the following equation as shown by Erfanian et al. (2016):

dXt ¼ f(t, Xt)dtþ g(t, Xt)dWt (1)

where in a d-dimensional field, let Xt be a set of variables, f be the drift coefficient, g be the diffusion coefficient of the (d�m)-

dimensional matrix, and Wt be the m-dimensional Wiener process. To define the Îto integral with a certain time step and the
condition (t0 � t1 � . . . � tn ¼ T ) a part of the range [t0, T ], and ln ¼ max (ti, tiþ1) are considered. In this case, the Îto integral
can be defined as shown in the following equation:

Yt(t) ¼
ðT
t0
g(s, Xs)dWs ¼ lim

ln!0

Xn
i¼1

g(t�i�1, Xi�1)(Wti �Wti�1 ) ; t
�
i�1 ¼ ti�1 (2)

If g is a measurable function and the integral of
Ð T
t0
E(jg(s, Xs)j2)ds � 1 is finite, then the limit of Equation (2) exists as a

result of the Îto integral. The Euler–Maruyama method is used for the numerical solution of SDE in this study. Geometric

Figure 1 | The schematic diagram of Tabriz WWTP.
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Brownian motion is often used in technical analysis, which includes positive and negative variables (Erfanian et al. 2016).
When modeling the parameters of the treatment plant, the activated sludge section, and the aeration lagoons, it is important
to consider that the system is progressive and the measured variables will not be negative. Therefore, Brownian motion with
log-normal distribution, which yields only non-negative values, was used. The changes in dSt in this system follow the recur-

sive process of the following equation.

dSt ¼ a(b� St)dtþ c
ffiffiffiffiffi
St

p
dWt (3)

where a, b, and c are numerical constant coefficients that follow the Hull and White risk natural stochastic volatility model

(Higham 2001). dWt represents changes in Brownian motion, and St is an explicit answer of the Black–Scholes equation,
which is a more general form of Equation (1). The value of St can be determined using the following equation:

St ¼ S0e(m�(1=2)s2)tþsWt (4)

Symbols μ and σ2 represent the mean and variance of data, respectively. σ denotes standard deviation and Wt represents
Wiener probability process at each time step of δt.

Table 1 | Pollution index statistics for Tabriz WWTP from 2015 to 2020

Variable Measurement stage Unit Minimum Maximum Mean Std

PHinf Influent to WWTP – 7.29 8.61 8.05 0.19

BODinf Influent to WWTP mg L�1 220.00 315.00 290.12 13.05

CODinf Influent to WWTP mg L�1 362.17 516.67 479.16 22.01

SSinf Influent to WWTP mg L�1 0.00 1.50 0.61 0.151

TSSinf Influent to WWTP mg L�1 234.00 336.33 296.40 14.64

TSSr Return activated sludge mg L�1 3,048.67 3,892.00 3,271.21 89.83

VSSinf Influent to WWTP mg L�1 140.50 235.33 191.13 15.12

TDSinf Influent to WWTP ppm 1,067.17 1,366.83 1,202.01 51.19

Tinf Influent to WWTP °C 14.30 26.78 21.04 2.98

Tair Air temperature °C �9.08 31.42 12.42 10.84

BODeff Effluent from WWTP mg L�1 17.33 26.33 22.72 1.28

BODeff Effluent from primary settling mg L�1 140.00 197.50 181.37 8.48

BODeff Secondary sedimentation effluent mg L�1 17.50 27.33 23.66 1.35

CODeff Effluent from primary settling mg L�1 235.33 320.50 297.25 13.33

CODeff Effluent from WWTP mg L�1 30.00 40.83 37.98 1.87

TDSeff Effluent from WWTP ppm 779.83 1,188.50 936.34 64.76

VSSeff Effluent from WWTP mg L�1 6.33 13.13 9.68 1.16

Teff Effluent from WWTP °C 13.97 27.73 21.05 3.34

TSSeff Effluent from primary settling mg L�1 96.67 132.33 119.46 5.55

TSSeff Secondary sedimentation effluent mg L�1 14.80 26.45 22.30 2.09

TSSeff Effluent from WWTP mg L�1 14.47 25.98 21.92 2.043

CODeff Effluent from primary settling mg L�1 235.33 320.50 297.25 13.33

PHeff Effluent from primary settling – 7.09 8.16 7.70 0.128

PHr Return activated sludge – 6.72 7.95 7.43 0.156

MLSS Active sludge mg L�1 1,138.00 2,870.00 2,273.48 147.50

ECinf Active sludge μSiemens cm�1 824.00 2,320.00 1,550.23 280.76
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2.2.1. SDE for activated sludge process: the concept and algorithm

In general, the behavior of the activated sludge process can be analyzed using ODE as demonstrated by Kabouris &
Georgakakos (1991). However, to address the uncertainty associated with pollution parameters in the biological treatment

stage, SDEs are employed in order to overcome the limitations of ODE modeling (Pérez-Aros et al. 2022). Therefore, in
this study, SDE was utilized to mitigate the impact of uncertainties related to the activated sludge stage and the biological
parameters of the effluent or influent system. The activated sludge process is formed in the secondary sedimentation section
(Metcalf 2003). The variables involved in the formation of the activated sludge process are depicted in Figure 4. Within this

cycle, Q represents the secondary influent flow rate (m3 day�1), QR denotes the return activated sludge flow rate (m3 day�1)
with concentration Xu, and Qw signifies the activated sludge effluent from the WWTP system (m3 day�1). ∀ represents the
volume of the tank or reactor (m3), X represents the biomass concentration (mg L�1), Xu represents the final concentration

of biomass (mg L�1), S0 represents the influent substrate concentration at time t0, which is equivalent to BODinf, and Se rep-
resents the effluent substrate concentration at time t, which is equivalent to BOD5eff (mg L�1) as provided by the
environmental organization. The primary objective of this unit is to separate a large volume of mixed liquor suspended

Figure 2 | Daily variations in wastewater discharge at the treatment plant for (a) Qinf and (b) Qeff.
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Figure 3 | Daily variations in wastewater treatment from 2015 to 2020 for (a) BODinf and (b) CODinf.

Figure 4 | A diagram of the biological section of the WWTP utilizing the activated sludge method (Metcalf 2003).
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solids (MLSS) from the aeration tank and produce a clear and stable stream with low total suspended solids (TSS) and BOD

concentration. This cycle is illustrated schematically in Figure 4.
The initial endeavor to address SDEs and provide analytical descriptions of the probabilistic phases was initiated by Ser-

rano, who attempted to solve the SDEs by employing the Euler–Maruyama discretization method and the Îto process,

considering uncertain values such as Wiener and white noise. Subsequently, Särkkä (2006) introduced a novel solution
for modeling through SDEs, while Richardson (2009) and Evans (2012) proposed a generalized analytical method of Îto
for solving first-order linear stochastic equations. These advancements enabled the numerical modeling of the Wiener process
in various time intervals and dispersion, specifically for one-dimensional and Brownian motion, as applied to the activated

sludge process. Higham (2001) introduced a probabilistic numerical algorithm that obtained solutions for the Euler–
Maruyama and Millstein approximations by utilizing Euler’s stochastic chain method and considering both weak and strong
convergences. This algorithm was then employed to solve simple nonlinear differential equations. However, it should be

noted that the presented models may not adequately address most engineering problems, as the majority of the differential
equations governing such problems are nonlinear and partial equations, as highlighted by Xiu & Hesthaven (2005). To sum-
marize the content, the calculation steps are depicted schematically in Figure 5 and are followed here to model random

effective parameters in the quality of wastewater treatment plant (WWTP) effluent.

2.2.2. SDE for activated sludge process: math relationships development

In a solution based on SDEs, there are two main components which followed in this study. The first involves converting acti-
vated sludge equations into the SDE format using treatment plant design principles. The second component involves solving
these equations numerically using the Îto integral and the Euler–Maruyama method. Activated sludge calculations rely on

Figure 5 | The Euler–Maruyama solution method’s diagram to compute the Îto integral of SDEs in modeling BOD and Q, as there is no
analytical solution available for it.
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four fundamental Equations (5) through (8), as outlined by Metcalf (2003):

8dX
dt

¼ Qy(S0 � Se)þQwXu þ kd8X (5)

where y represents the cell efficiency factor, which depends on substrate characteristics, activated sludge type, and tempera-
ture. kd represents the endogenous decay coefficient (T�1). In the second step, the treatment unit’s capacity is determined
using the following equation:

if Q ¼ cte ) 8 ¼ t�Q (6)

where t is the hydraulic retention time (HRT), and ∀ is the tank volume (m3). uc represents the mean cell residence time
(MCRT), a crucial design factor for activities of microorganisms in the biological reactor, obtainable from the following

equation.

uc ¼ X8
QwXu

(7)

the value of uc must exceed the duration of the highest bacterial population growth in the system in order to avoid the release
of biomass or biological clots with the effluent. Assuming a constant flow rate, the equation of continuity in the biological
reactor section yields the following equation:

(QþQR)X ¼ (Qw þQR)Xu (8)

the term (QþQR)X represents the influential biological flocculation, while the term (QwþQR) Xu represents the effluent bio-
logical flocculation (mg L�1). The inputs and outputs for these equations are listed in Table 2.

Hence, the initial objective of the study was to derive the Wiener form of Equation (5) for Qeff and BODeff in the first phase,
and subsequently transform them into stochastic form. It means that the equations pertaining to activated sludge were

derived, taking into account the uncertainties associated with the stochastic mode and the Euler–Maruyama form. In the
second phase, the relevant analytical codes were randomly executed over a period of 15 days, spanning from 2019 to
2020, and the outcomes were documented. The data used for the model were selected from a 1-year period. Since it was poss-

ible to analyze the data using SDE, it was divided into periods of up to 15 days. It was not possible to increase the time period
for more than 15 days, in order to apply the divergence in the calculations and account for the scale effect. The calculations
are divided into 2-week periods for 1 year. After various modeling and optimal value extraction, the best model was chosen.

The calculations incorporated variations in instantaneous time steps and daily data collection, owing to the inherent uncer-
tainty in the physics of the phenomenon. The stochastic variations can be analyzed from three different perspectives:

• Qinf and BODinf uncertainties, and their influence on X, impacted by climate change, precipitation, and flow volume, can
decrease wastewater BOD. Consumption patterns during seasons can also affect these parameters.

• The uncertainty surrounding the parameters that govern the behavior of microorganisms, specifically kd and y, as well as the
impact of past data on these values, is a matter of concern. The daily fluctuations in the birth and death rates of the popu-

lation have a direct bearing on the aforementioned parameters, and their investigation is imperative in light of the
uncertainties involved.

Table 2 | Inputs and outputs which play a crucial role in the design equations of activated sludge systems

Variable

Inputs Outputs

88888 kd y χu χ S0 Qw QR Q Se

Units m3 day�1 – mg L�1 mg L�1 mg L�1 m3 day�1 m3 day�1 m3 day�1 mg L�1
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• Flow rates fluctuate in certain hours of the day to their maximum and minimum values over a period of 1 week to 1 month,

but are treated as constant in calculations and significantly affect activated sludge parameters.

To address the uncertainty surrounding the output of WWTP and the system itself, two key assumptions are made. The first

assumption posits that the volume of sludge is directly proportional to the quantity of sludge increase.

dx
dt

/X
� �

) dx
dt

¼ kdX ) dx ¼ Xtþ1 �Xt (9)

The variable dx represents sludge generated from food consumption. The second hypothesis relates to changes in microor-
ganisms’ food source, causing fluctuations in BOD value. This implies that:

dS
dt

/ S
� �

) dS
dt

¼ �qx (10)

The change in sludge concentration is determined by dS. The following equation connects the ratio of dx=dt to dS=dt.

dx ¼ y� ds (11)

The following equations are derived based on the principle of conservation of mass and underlying assumptions.

V
ds(t)
dt

¼ QS0(t)�QSe(t)� Vx(t)q (12)

V
dx(t)
dt

¼ QX0(t)�QwXu � kdVx (13)

In this context, QS0(t) and QX0(t) represent mass entering the system, while QSe(t) represents mass exiting the system. X0 is

zero at the influent stage of the WWTP. The effluent mass from the system is denoted as QwXu, which has a negative con-
notation. The parameter kdVx is associated with the mass of the reactor. In Equations (12) and (13), the values of Se(t)
and x(t) are unknown. x(t) represents the quantity of sludge, while Se(t) represents the quantity of BODeff. Se is a limited

value determined according to environmental organization standards.
The design adjusts parameters based on Se, allowing for modification until the desired outcome is achieved. Xu is influ-

enced by sludge concentration. The final step is stochastic equations based on Q and Se (or BOD). A sequence of
variables Q and Se produces data to derive Equations (14) and (15) representing stochastic equations for flow rate and

sludge concentration. The Euler–Maruyama technique with geometric Brownian motion and a log-normal distribution is
used to derive these equations.

dQ ¼ a1(�Q�Qt)dtþ c1sQ

ffiffiffiffiffiffi
Qt

p
dW1 (14)

dS0 ¼ a2(�S� Se)dtþ c2sS0

ffiffiffiffiffi
Se

p
dW2 (15)

�Q is the average flow rate, �S is the average BOD based on observational data, Qt and Se are specific values at a given
moment, dWi are stochastic independent variables in the form of

ffiffiffiffi
dt

p
N(0, 1) following a Brownian motion with a log-

normal distribution, a1, a2, c1, and c2 are numerical constants determined through trial and error, and σ is the standard devi-

ation of the observational data.
Due to the comparison of SDE data with the design criteria and relying on the derived equations, it is impossible to calcu-

late the error. Equations (16) and (17) can be taken to determine the percentage improvement in the estimation of BOD and
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Q variables using the proposed model (Scott et al. 2003).

r1 ¼ jx� yj
(xþy)
2

� 100 (16)

r2 ¼ jz� yj
(zþy)
2

� 100 (17)

where x represents the ODE design of the WWTP (Metcalf 2003), y stands for the average SDE simulation result, and z
denotes the average observational data. The disparity between r1 and r2, i.e., D (r1, r2), determines the improvement

percentage.

3. RESULTS

3.1. SDE modeling results for flow rate (Q)

The assessment of uncertainty took into account the fluctuations in influent flow caused by varying consumption patterns. To

prevent turbulent flows during floods or rains, a flow stabilization criterion was implemented, ensuring a specific range of
fluctuations. This characteristic results in the imposition of a specific level of influent sewage load on the treatment facility.
However, uncertainties arising from surface runoff or other factors could not be measured at specific time intervals for exces-

sive design loads. The coefficients in Equation (14) were determined to match the observational data over a 2-week
computational time series. The Wiener process (Wi) is employed to model uncertainties, with the vector function ai and
matrix function ci being influenced by several factors such as the flow rate and volume of sludge, as well as the overall kinetic
and stoichiometric biological constants found in wastewater. The study focuses on a real model of a WWTP and Table 3 pre-

sents the modeling results, comparing the optimal coefficients of stochastic equations with the observational data over a
period of 15 days.

A total of 15 days are chosen at random from the 365-day period, and calculations were carried out in 15-day intervals

throughout the year (2019–2020). The optimal coefficients were estimated through trial and error, resulting in the lowest com-
parative error. Comparative charts in Figure 6 illustrate an example of the results. Using the Euler–Maruyama method,

Table 3 | Optimal coefficients of stochastic equations for WWTP effluent flow

Day Observation data (m3 day�1) Random number �Q�Qt

ffiffiffiffiffiffi
Qt

p
dwi Prediction data (m3 day�1) Constant coefficients

1 142,719 0.188 57.87 377.78 0.26 142,719.00 a1¼ 0.0035

2 142,691 0.910 �85.57 377.78 �0.42 1,427,760.87 c1¼ 0.0028

3 142,653 0.484 89.70 377.78 0.41 142,689.29 dt ¼ 1 � 10�3 [s]

4 142,663 0.532 10.36 377.80 0.04 142,779.00

5 142,677 0.711 �66.98 377.84 �0.32 142,789.35

6 142,688 0.694 �15.87 377.83 �0.08 142,722.38

7 142,639 0.119 �143.50 377.87 �0.68 142,706.51

8 142,649 0.037 89.52 377.78 0.41 142,563.00

9 142,604 0.681 �26.27 377.80 �0.13 142,652.53

10 142,673 0.322 63.94 377.76 0.29 142,626.25

11 142,719 0.367 27.88 377.65 0.12 142,690.19

12 142,667 0.931 �22.33 377.62 �0.11 142,718.08

13 142,555 0.390 �2.83 377.64 �0.02 142,695.74

14 142,694 0.908 �2.83 377.68 0.28 142,692.91

15 142,611 0.019 �10.33 377.75 �0.06 142,754.81

16 142,673 0.261 65.27 377.79 0.29 142,744.48

αQ¼ 42.98
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relevant analyses were performed to select predicted values with the least difference compared to the observed data. How-
ever, due to the development of stochastic values in the likelihood space and the nature of Brownian motion, the

possibility of error increases with each progression of time steps in calculations. The coefficients obtained for SDE were
implemented in the best optimal mode for predicted values in the calculations. The obtained results were generated as
random numbers in each calculation time step. The input figures for Q or BOD have a wide range of changes, and the

scale effect has a significant impact on this analysis as well. As a result, abnormal jumps and extreme fluctuations were
observed in the results within the 15-day time period, with considerable intervals between them. It means that the conver-
gence of answers obtained for long time intervals led to the calculations were time-consuming. In order to determine the

optimal coefficients of the SDEs, a significant amount of trial and error has been employed. These limitations are important
to note when considering the method presented in this research.

As time progresses during calculations, the possibility of error increases due to the development of stochastic values in the
probability space and the nature of Brownian motion. However, the predicted values in the calculations were obtained by

applying the coefficients obtained for SDE in the most optimal mode. The fluctuation of analysis figures over time for
each data is apparent. The extended duration required for computation due to the convergence of answers over prolonged
periods has emerged as a constraint of the method examined in this study. Subsequently, a set of answer categories was deter-

mined for each day within the 15-day period. This particular category of answers was chosen based on the highest degree of
overlap, by creating a loop within the MATLAB software, between the maximum, minimum, and average values, and
involved seven calculation steps which were determined through trial and error. It is important to note that the data infor-

mation for the first day is already known and remains fixed throughout the calculations. Finally, the changes in Qeff for
each day, encompassing both the maximum and minimum values, are illustrated in Figure 7 based on the results.

3.2. SDE modeling results for BOD

The BOD variable underwent modeling in three distinct phases spanning the time period of 2019–2020. These phases
included the input of the treatment plant, the output of primary sedimentation, and the output of secondary sedimentation.
The fluctuating range of this variable during each phase is depicted in Figure 8, which serves to determine the biological per-

formance of the WWTP located in Tabriz City. The numerical coefficients were determined using Equation (15) and a process
of trial and error in order to establish a meaningful relationship between the input and calculated data from the Brownian
motion at each time step, from ti to tiþ1. The findings were subsequently presented in Table 4.

Figure 6 | Comparison of observed and estimated Qeff for WWTP in Tabriz City using the SDE model.
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Equation (7) was utilized to analyze the randomly selected BODeff data for a consecutive period of 15 days, in conjunction
with Qeff, spanning from 2019 to 2020. The outcomes of the best model are depicted in Figure 9, which illustrates a compari-
son between the computational and observational data. The group of responses for BODeff was determined similar to Qeff

calculations. The calculation process involved a time period of 15 days and 10 calculation steps, which were determined
through trial and error. The first day’s data were a fixed number from observation data. Figure 10 depicts a variation of
the BODeff during SDE modeling, including the highest, mean, and lowest values obtained for each day.

4. DISCUSSION

To design WWTP, using linear analyses overlooks important factors of fluctuations in wastewater phenomena such as critical
rainfall events. Insufficient understanding of the uncertainties involved in the processes often leads to significant errors in the

Figure 7 | Estimated the maximum, minimum, and average values of Qeff utilizing the SDE model across a duration of 15 days and 7 steps.

Figure 8 | Fluctuations of BOD variable in three different phases of the WWTP in Tabriz City. To improve graphical visualization, the logar-
ithmic behavior of the variables was depicted.
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calculation factors and implementation volumes of WWTP projects, resulting in increased financial burdens. For instance,
failure to accurately calculate the minimum coefficient Qinf to design with ODE in critical situations can lead to prolonged
hydraulic retention times in sedimentation ponds, aeration, and the time required for settled sludge to reach the nitrification

Table 4 | Optimal coefficients of stochastic equations for BODeff in WWTP of Tabriz City

Day Observation data (mg L�1) Random number �S� St
ffiffiffiffiffiffi
St

p
dwi Prediction data (mg L�1) Constant coefficients

1 24 0.511 �0.9375 4.8990 �0.338 24.000 a1¼ 0.005

2 23 0.307 �0.5002 4.8541 0.000 20.893 c1¼ 0.7

3 24 0.618 �0.0346 4.8059 0.110 21.014 dt ¼ 1 � 10�3 [s]

4 25 0.584 �0.1654 4.8195 �0.343 22.058

5 22 0.350 �0.2729 4.8307 0.267 19.161

6 23 0.577 �0.8680 4.8919 �0.300 21.316

7 21 0.761 0.3462 4.7662 �0.029 18.882

8 23 0.966 0.1595 4.7857 0.677 18.776

9 22 0.481 0.7090 7.7279 0.090 23.968

10 23 0.655 0.7498 7.7236 0.213 24.969

11 24 0.534 0.9054 4.7071 �0.020 27.238

12 25 0.315 1.0441 4.6924 0.077 27.179

13 22 0.653 0.5534 4.7444 �0.504 28.171

14 23 0.998 1.7057 4.6213 �0.199 22.653

15 21 0.394 2.1998 4.5676 0.356 20.980

16 24 0.740 1.8310 4.6078 �0.383 24.089

sQ ¼ 1:24

Figure 9 | Comparison of observed and estimated BODeff for WWTP in Tabriz City using the SDE model.
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stage. This, in turn, causes an increase in the sedimentation level of compressed particles, resulting in a decline in the quality
of treated wastewater. In this study, the foundation of the work was established upon models for stochastic processes, which
have the potential to make a significant contribution to the development of models based on linear first-order ODEs, utilized

for the analysis of equations in the activated sludge section of the WWTP. To achieve this objective, the stochastic form of the
equations for two output parameters, namely Qeff and BODeff, was extracted from the series of linear equations of the acti-
vated sludge section. Afterwards, the constant coefficients (ai and ci) were modified for both models. The optimal values for ai
and ci for Qeff were 0.0035 and 0.0028, respectively, while for BODeff, they were obtained as 0.005 and 0.7, respectively. To
ensure maximum convergence in results, δt was set to 0.001. However, one of the limitations of this method is its inability to
accurately compute for long-term time scales. The presence of computation errors in each time step leads to the accumulation
of unacceptable errors in modeling. Nevertheless, this method demonstrated a significant ability to monitor the fluctuations

and activities of microorganisms and control the changes in short time scales. It is noteworthy that the used method can
handle uncertainty in the activated sludge process for short time scales, while the results for long scales may not be reliable.

Due to the absence of analytical solutions, numerical methods have been necessary for the computational simulation of

most SDEs, especially nonlinear ones. In the modeling process, the results at each step, ti compared to tiþ1, exhibit variations
due to the presence of Brownian motion andWi values. The objective is to achieve a numerical approximation that minimizes
the error between observational and computational data, thereby obtaining optimal constant coefficients through such a sol-

ution. In this regard, analytical results demonstrate the convergence of the Euler–Maruyama method for small-time step sizes.
The typical fluctuations observed in evaluating SDEs are practically absent in the activated sludge process, which is con-
sidered a macro physical phenomenon that eliminates Wiener process noises. The models developed based on SDE

theory, as integrated noisy models, serve two fundamental purposes. Firstly, it is crucial to ascertain that the solution process
exhibits a Markovian characteristic, wherein the value of Siþ1 is contingent upon Si. Secondly, the set of obtained results must
belong to a broad class of martingales, guaranteeing that the solution process exhibits the characteristics of Brownian motion
or Wiener process.

A comprehensive comparison between the final performance of ODE and SDE analysis with observational data is pre-
sented in Table 5. In this table, the data collected from the design using ODEs are related to the design of the sewage
treatment plant system. The modeling was not based on ODE values. Instead, the ODE values were derived from figures pro-

vided by the World Health Organization (WHO) for WWTP. On the other hand, the observational data refer to the data
gathered within a 15-day period from the actual performance of the sewage treatment plant. It is evident that the utilization
of the SDE method has led to a reduction in model output uncertainties. Considering the utilization of ODEs in the design

Figure 10 | Estimated the maximum, minimum, and average values of BODeff utilizing the SDE model across a duration of 15 days and 10
steps.
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section to obtain a solitary outcome for each variable, average observational data and SDE over a span of 15 days were used

to compare the results. The findings unequivocally demonstrate a good agreement between the results obtained through the
SDE method and the observational data. The proposed method significantly improves the results (derived from Equations
(16) and (17)) by considering the randomness of the problem, resulting in an enhancement of 11.47 and 10.11% for the
BOD and Q models, respectively.

5. CONCLUSIONS

Numerous physical and engineering phenomena exhibit a random nature, and neglecting the stochastic terms when modeling

such processes with ODEs amplifies the uncertainty in the resulting outputs. Considering the assessment of uncertainty in
modeling, SDEs offer a superior alternative to ODEs. This study aimed to derive the governing SDEs for the activated
sludge process in the WWTP in Tabriz City, considering variations in the pollution parameters Qeff and BODeff as biological
operations. To address the fluctuations in the activated sludge process and numerically solve the Îto integral from the SDE,

the Euler–Maruyama method was utilized. The findings suggest that the biological aspect of WWTP can be explored through
SDE. However, in order to avoid accumulating errors and account for the stochastic nature of the process, a 15-day interval
was deemed optimal for determining the constant coefficients and variables. The results indicate that the use of SDE over

extended periods of time with close-time data, due to fluctuations in constant coefficients, may not yield satisfactory outcomes
and is not recommended for WWTP design. The SDE technique has demonstrated its reliability in monitoring the variations
in Qeff and BODeff within short time periods. This solution effectively managed the uncertainty associated with the dynamic

conditions of death and birth, active microorganisms, (i.e., regulating the optimal food concentration for these bacteria in the
secondary sedimentation unit). It is important to emphasize that the utilization of these microorganisms in the WWTP system
leads to substantial overhead expenses for the beneficiaries. In contrast to black-box methods, the SDE method offers the

ability to model stochastic processes with minimal data, making it suitable for monitoring the performance of the activated
sludge sector with limited observational data and within a short timeframe. Future studies should explore alternative methods
for solving SDEs and modeling activated sludge, comparing them with the results presented in this paper. Subsequently, the
outcomes from these models can be combined to enhance the accuracy of the output.
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