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ABSTRACT

Forecasting short-term water demands is one of the most critical needs of operating companies of urban water distribution networks. Water

demands have a time series nature, and various factors affect their variations and patterns, which make it difficult to forecast. In this study,

we first implemented a hybrid model of convolutional neural networks (CNNs) and recurrent neural networks (RNNs) to forecast urban water

demand. These models include a combination of CNN with simple RNN (CNN-Simple RNN), CNN with the gate recurrent unit (CNN-GRU), and

CNN with the long short-term memory (CNN-LSTM). Then, we increased the number of CNN channels to achieve higher accuracy. The accu-

racy of the models increased with the number of CNN channels up to four. The evaluation metrics show that the CNN-GRU model is superior

to other models. Ultimately, the four-channel CNN-GRU model demonstrated the highest accuracy, achieving a mean absolute percentage

error (MAPE) of 1.65% for a 24-h forecasting horizon. The effects of the forecast horizon on the accuracy of the results were also investigated.

The results show that the MAPE for a 1-h forecast horizon is 1.06% in four-channel CNN-GRU, and its value decreases with the amount of the

forecast horizon.

Key words: convolutional neural networks, forecasting short-term water demand, GRU, hybrid multichannel deep learning, LSTM, recurrent

neural networks

HIGHLIGHTS

• Time series analysis of water demand using hybrid deep learning models can be a suitable option for short-term forecasting.

• Hybrid deep neural networks integrate the advantages of the two classic models of convolutional neural networks (CNNs) and recurrent

neural networks (RNNs).

• The combination of CNN and RNNs can simultaneously extract the appropriate features by CNN and learn the long dependency between

data by RNNs.
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1. INTRODUCTION

Urban water distribution networks (WDNs) are one of the vital infrastructures of any city. Intelligent operation management
is necessary for WDNs to ensure adequate water supply at the desired pressure and quantity for consumers. One of the essen-
tial requirements of operation management in water supply networks is to predict the amount of water demand needed in that

network in the short-term and the hourly interval. Many factors affect the quantity of water demand, such as temperature,
precipitation, relative humidity, population, network water pressure, water price for various uses, water losses, the method
and system of measuring water consumption, household income, yard area, and green space (Arbués et al. 2003; Wentz &

Gober 2007; Schleich & Hillenbrand 2009; Nauges & Whittington 2010; de Maria André & Carvalho 2014; de Souza
Groppo et al. 2019).

Water demand forecasting methods can be divided into two general categories of linear and nonlinear methods (Zhang

2001; de Souza Groppo et al. 2019). Exponential smoothing, autoregressive integrated moving averages (ARIMA), and multi-
variate linear regression are linear methods that use univariate or multivariate time series analysis (Adamowski & Karapataki
2010; Adamowski et al. 2012; Ristow et al. 2021). In this regard, various regression methods were used by Shuang & Zhao

(2021) to predict urban water demand. Short-term water demand follows a nonlinear pattern and is affected by many factors.
In most of the past studies, statistical methods were less accurate than nonlinear methods for forecasting short-term water
demand. These methods are used more for long-term forecasting (Donkor et al. 2014; Ghalehkhondabi et al. 2017).

Nonlinear regression and artificial neural networks (ANNs) with nonlinear activation functions are nonlinear methods. For

example, ANNs were used by Ghiassi et al. (2008) to predict water demand. Herrera et al. (2010), Peña-Guzmán et al. (2016),
and Brentan et al. (2017) used the support vector machine method. Also, Altunkaynak et al. (2005) and Firat et al. (2009a)
used fuzzy logic. Other ANNs used in past studies to predict urban water demand can be cited, such as the generalized

regression neural network, the radial basis function networks, the feedforward neural network (Firat et al. 2009b), and the
extreme learning machine method (Mouatadid & Adamowski 2017). A machine learning (ML) model such as the abovemen-
tioned models cannot simultaneously perform feature selection and prediction. On the other hand, using all the features in

ML models, in addition to the problems of collecting data in the real world, increases the computational cost and reduces the
model’s accuracy. Therefore, to feature selection, reduce the computational cost, adjust neural network parameters, and elim-
inate noise from data, the researchers focused on hybrid methods for predicting water demand (Tiwari & Adamowski 2015;

Shirkoohi et al. 2021). As mentioned earlier, one of the significant challenges of using ML methods is choosing the appro-
priate features that directly affect the prediction results. On top of this, these models often pose an overfitting problem
with the increase in data (Sajjad et al. 2020). In deep learning methods, feature selections are made automatically through
many hidden layers; their accuracy usually increases with increasing data. Similarly, several deep neural networks

(DNNs) are developed for water demand prediction. For example, Mu et al. (2020) used the long short-term memory
(LSTM) model to predict hourly and daily water demand in Hefei in China. They obtained better results than support
vector regression, random forest, and ARIMA models. In another study, Guo et al. (2018) used the gate recurrent units

(GRU) model to forecast water demand with a time step of 15 min. In this study, the GRU model was more accurate than
the conventional ANN model and the seasonal ARIMA model. Convolutional neural networks (CNNs) are widely used in
various fields, including time series, due to their high ability to extract features, and recurrent neural networks (RNNs)

can learn time dependency between data. Namdari et al. (2023) used a one-dimensional CNN (1D CNN) to forecast
short-term urban water demand. Next, they compared the results with other deep learning models including simple
RNNs, LSTM, GRU, and deep feedforward neural networks (DFNNs). The results of their study showed that 1D CNN, com-
pared to other models, predicts short-term water demand with higher accuracy, and the DFNN model has the least accuracy

compared to other models.
Hybrid DNNs can consist of CNNs and RNNs. In hybrid DNNs, CNNs are utilized to capture spatial features, while recur-

rent models are employed to model temporal features (Sajjad et al. 2020). The convolution layers in these models extract the

features from the dataset, and the RNNs learn the long dependency between the data. Hybrid DNNs excel in recognizing
patterns with both spatial and temporal characteristics. Recently, researchers used these models for prediction in various
fields, for example, human activity recognition (Lu et al. 2022), petroleum price prediction (Kim & Jang 2023), electric

energy forecasting (Wang et al. 2023b; Yang et al. 2023), estimation of the yield of agricultural products (Wang et al.
2023a), wind speed forecasting (Lv et al. 2023), and forecasting stock market indices (Song & Choi 2023).
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In past studies, researchers have used various methods to predict water demand, but despite much research in this field, the

hybrid DNN has received less attention. The water demand follows a time series pattern with a complex and multifaceted
structure, and it is challenging to collect all the characteristics affecting water demand in a real-world implementation. On
the other hand, despite having a high ability to analyze nonlinear water demand data, ML models are weak in dealing

with nonstationary data (Ghalehkhondabi et al. 2017). In this study, we implemented hybrid DNNs to forecast short-term
urban water demand by combining CNN and RNNs. The combination of CNN and RNNs can simultaneously extract the
appropriate features by CNN and learn the time dependency between data by RNNs.

2. METHODOLOGY

The pattern of water demand has the nature of a time series. In this study, we seek to find the pattern of water demand based
on historical records of water demand to forecast the hourly water demand for the next 24 h. In other words, we want to solve

a multistep univariate time series problem using hybrid DNNs. For this purpose, first, the water demand data are prepro-
cessed. The missing values are filled with appropriate values, and outliers are identified and removed from the dataset.
The models used in this study are supervised models that need labeled data. To convert the data into labeled data, we

obtain the optimal lag between the data by calculating the autocorrelation of the dataset. Then, we convert the data into
labeled data based on the optimal data lag, as described in Section 5.2. We combined the 1D CNN with RNNs and
implemented it after the dataset preparation. These networks include the following: (1D CNNþ Simple RNN), (1D

CNNþ LSTM), and (1D CNNþGRU). To increase the accuracy of the model, we increased the number of CNN routes
(channels). The input data are entered into multiple 1D CNN channels with different filter sizes. The outputs from the
CNN channels are concatenated and then passed into RNN layers. Finally, we compared the results of these hybrid

models and introduced the best hybrid DNNs to predict short-term water demand. Figure 1 shows the proposed framework
of the hybrid DNNs in which the RNN blocks in the models are Simple RNN, LSTM, and GRU. In this figure, [X1, X2, …,Xp]
is the input layer, and [Y1, Y2, …,Yn] are the forecast values for the first hour to the last hour of the time horizon. In the fol-
lowing, after the introduction of DNNs, the implementation method will be explained.

3. INTRODUCTION OF DNNS

3.1. 1D CNNS

Two-dimensional CNNs (2D CNNs) are generally used in image and video recognition, image classification, medical image
analysis, and natural language processing. These networks are a component of feedforward ANNs that include convolution

and pooling layers. A modified version of 2D CNNs called 1D CNNs has recently been developed. The primary difference
between these two networks is that 1D arrays are used instead of 2D matrices in convolution and pooling layers to prepare
the feature map. The computational cost of 1D CNNs is much lower than that of 2D CNNs (Kiranyaz et al. 2021; Qazi et al.
2022). In this sense, they are an excellent choice for signal processing and analyzing time series data. Figure 2 shows the
details of a 1D CNN.

3.2. Simple RNNs

RNNs belong to the family of DNNs and are specifically designed for processing sequential data. These neural networks have

memory created by a recurrent unit in these networks. In other words, these networks, in addition to the standard layers in
multilayer neural networks, have a return connection in the hidden layer, which makes it transfer the information of the pre-
vious step and play a role in decision-making. According to Figure 3, RNN units can be defined with a recursive relation:

st ¼ f(xt, st�1) (1)

In this equation, xt is the input of the network at time t, st is a vector of values called the state of the internal network at
time t, and st�1 refers to a summary of previous network inputs for times before t.

3.3. LSTM neural network

LSTMs are a particular type of RNN. Hochreiter & Schmidhuber (1997) created a neural network in 1997 to learn long-term
dependencies. This network can learn long-term dependencies in the dataset due to having a special memory cell. There are
three types of gates in LSTM: forgetting, input, and output. In the forgetting gate, what information to delete or retain in the
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Figure 1 | The proposed framework of the multichannel hybrid DNNs.

Figure 2 | 1D CNN for time series data analysis.

Figure 3 | A simple RNN.
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memory cell is decided; in the input gate, the decision is made in the direction of what new information is stored in the state

cell; and in the output gate, how much of the long-term memory should be transferred to the output is determined. Figure 4
shows the architecture of the LSTM unit.

3.4. GRU neural network

The GRU architecture was designed by Cho et al. (2014). Two gates are used in the GRU network: update and reset gates. In
the update gate, based on the new input and the information in the memory cell related to the past, it decides what infor-

mation should be kept and what information should be deleted. In the reset gate, based on the new input (at time t) and
the information in the memory cell, it decides what information should be deleted. The information from the previous
time step’s memory cell is combined with the remaining information to generate a candidate memory cell. In the last step,

the update gate determines the proportion of the candidate memory information and memory cell information from the pre-
vious step that will be added to obtain the memory cell vector at time t. The memory mentioned is utilized as a hidden state
for the time tþ 1, and by applying an activation function on it, the output at time t can be obtained. Figure 5 shows the archi-
tecture of the GRU unit.

3.5. Hybrid DNNs

Hybrid DNNs leverage water demand data sequences as input to a convolutional layer structure, which performs feature
extraction. The output of the convolutional layer is then passed through a flattening layer and fed as input to RNNs,
whose final output is the forecast value of the water demand. Following the experimental comparison, it has been observed
that this solution effectively combines the benefits of the two traditional models of CNN and RNNs (Xu et al. 2021). The
Figure 4 | Architecture of the LSTM unit.

Figure 5 | Architecture of the GRU unit.
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CNN layer aids in comprehending the sequential features of the input while the RNN layer learns long-term dependencies

between data (Xu et al. 2021). Various types of RNNs are used in these models, including Simple RNN, LSTM, and GRU.

4. CASE STUDY

Shiraz City is the capital of Fars province, located in the south of Iran. This city is the fourth most populated in Iran, with a

population of about two million people and an area of 1,268 km2. This city, based on meteorological data, has a moderate
climate. Its average annual temperature is 19.3 °C, and its annual rainfall is 294 mm. According to the reports of Shiraz
Water and Wastewater Company, about 75% of drinking water in this city is supplied by 180 underground water wells,
and 25% is supplied by surface water. Due to the large number of water production sources and pumping stations in the

WDN, it is necessary for short-term water demand forecasts in hourly intervals for operating companies. With a proper fore-
cast of short-term water demand, the operating company can deliver water to the customers in sufficient quantity and at the
appropriate pressure and minimize energy consumption costs with proper planning for pump operations. Saadi Town is a

mountainous region in the east of Shiraz. It covers an area of 360 hectares and has a population of over 60,000 people.
We considered this section of Shiraz City as the study area with an independent WDN. The dataset used in this study was
34,840 hourly water demand records from 19 May 2016 to 18 May 2022, of which 8,984 data records are missing.

The minimum and maximum hourly demand in the dataset is 131.7 and 1,103.2 m3 with an average of 596.49 and a standard
deviation of 131.7 m3.

5. IMPLEMENTATION OF HYBRID DNNS

5.1. Data preprocessing

Data preprocessing is an important step in data mining projects, and quality decisions can only be made when they are based
on quality data. In this research, we used hourly water demand in past years. Water demand data may not be recorded in the

dataset at some hours of the day for various reasons. To fill in the missing values, if the missing data are related to an hour on
a working day, we used the average demand in the same hour on the day before and after it. In another case, the missing data
are related to a holiday or the day before or after a holiday; we used the average demand at the same time and day in the week

before and after that. This method for filling missing values is the most likely state for missing values and prevents data bias.
Using this method to fill in the missing values due to the high probability of occurrence and being close to reality will con-
siderably solve the problem of bias in the data and also preserve the seasonal changes in the value of demand in correcting the

missing value.
Outlier data are data that are significantly different from other data. Their use in ML models causes anomalies and negative

bias in the results. We identified outliers using the boxplot. Through this method, we calculate the value of the data’s first and
third quartiles (Q1, Q3) and get the difference between them (IQR¼Q3�Q1). Data that are larger than Q3þ 1.5IQR or smal-
ler than Q1� 1.5IQR are considered outliers. In the dataset, 52 hourly records were identified as outliers using the boxplot
and removed from the dataset. Then, the deleted values were filled in as in the case of missing data.

Normalization is rescaling data from the original scale so that all values are taken to a small and specific domain. Neural

network models use the gradient descent algorithm to minimize the cost function, and if normalization is used, the conver-
gence speed is much higher (Han et al. 2022). We used Min–Max normalization in this study and converted the dataset to the
range of 0–1 according to Equation (2):

V 0 ¼ V �MinA

MaxA �MinA
(2)

The MinA and MaxA are the minimum and maximum values of a feature A, V is the value of the feature, and V0 is the value
of the normalized feature.

5.2. Implementation of single-channel hybrid models

To pump scheduling in WDNs, it is necessary to forecast the hourly water demand for the next 24 h. The pattern of water

demand has the nature of a time series. To forecast water demand in the next 24 h, we solve a time series problem using
deep supervised learning models. The data need to be labeled for supervised learning models, so we calculate the optimal
lag between water demand data using the autocorrelation function. This helps us convert the dataset into labeled data.
://iwa.silverchair.com/aqua/article-pdf/73/3/380/1393082/jws0730380.pdf
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We use the following equation to calculate the optimal lag:

AC(Xt, Xt�lag) ¼
Cov(Xt, Xt�lag)

Var(Xt)
(3)

In this equation, AC(Xt, Xt�lag) represents the autocorrelation, Cov(Xt, Xt�lag) is the covariance between values at time t and
t-lag, and Var(Xt) denotes the variance of values at time t. We identify the optimal lag by drawing the autocorrelation plot of the
water demand data. The autocorrelation plot between the data is shown in Figure 6. The blue shaded area in this figure indicates a
95% significant level, and the vertical lines (correlation values) that are taller than this area indicate the presence of significant
correlation in that lag (Lazzeri 2020). As evident in this figure, the highest autocorrelation between the data in lag is 24.

Hence, we select the water demand data from time 1–24 as the feature of the first sample and its value from time 25–48 as the
sample’s label. We repeat this process until the final data (Table 1) are labeled and used as model input (Namdari et al. 2023).
Then, we selected 80% of the beginning of the dataset for the training data and 20% of the end of the dataset for the test data.

Hyperparameter tuning was done manually so that we implemented a 1D CNN model with 16, 32, 64, and 128 filters,
kernel size¼ 2–4, and 1–4 1D-convolutional layers. Similarly, for hybrid DNNs, we implemented various combinations of
the number of layers and blocks of RNN after 1D CNN layers. By changing and adjusting other hyperparameters (i.e., acti-

vation functions, initial weighting method of parameters, number of epochs, and optimization algorithm), we obtained the
performance of the models with each combination. We selected the best architecture for each model. The selected 1D
CNN model had three layers of 1D convolution (Conv1D) with 64 filters in the first layer, 128 filters in the second layer,

64 filters in the third layer, with kernel size¼ 3, and a max-pooling layer with size 2. The Rectified Linear Unit (ReLU) acti-
vation function was used in all layers. In selected hybrid DNNs, after convolution layers and max-pooling 1D, two layers with
RNN blocks were used (Simple RNN, LSTM, and GRU). Then, its output enters a fully connected layer with 24 neurons with
a scaled exponential linear unit (SELU) activation function, the forecast values of water demand in the next 24 h. RNN layers
Figure 6 | Autocorrelation plot of hourly water demand data.

Table 1 | Converting water demand time series into the labeled dataset

Sample Feature Label

1 Q1 Q2 Q3 …. Q24 Q25 Q26 Q27 …. Q48

2 Q2 Q3 Q4 …. Q25 Q26 Q27 Q28 …. Q49

3 Q3 Q4 Q5 …. Q26 Q27 Q28 Q29 …. Q50

4 Q4 Q5 Q6 …. Q27 Q28 Q29 Q30 …. Q51

… … … … … … … … … … …

n Qn Qnþ1 Qnþ2 … Qnþ23 Qnþ24 Qnþ25 Qnþ26 … Qnþ47
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are in the CNN-GRU model with 100 and 80 GRU blocks with ReLU and SELU activation functions, respectively. The CNN-

LSTM model used 50 and 32 LSTM blocks with ReLU activation functions, and the CNN-Simple RNN model used 100 and
50 blocks of Simple RNN with tanh activation functions. Figure 7 shows the architecture 1D CNN and hybrid DNNs models
for short-term water demand forecasting examined in this study.

5.3. Implementation of multichannel hybrid models

In hybrid multichannel models, the input data are entered into several channels of 1D CNN with different filter sizes. Finally,
they are concatenated together and then entered into RNN layers. In this study, we implemented hybrid multichannel models,
CNN-GRU, CNN-LSTM, and CNN-Simple RNN, with 2–5 1D CNN channels according to the architecture shown in

Figure 8. We used three convolution layers with the number of filters 64, 128, and 64 in each channel of the 1D CNN. In
the first channel, we chose a kernel size of 3; in the next channel, we added two units to the kernel size so that in the
five-channel model, we considered a kernel size of 11. Figure 8 shows the architecture of multichannel DNNs for CNN-
GRU. For CNN-LSTM and CNN-Simple RNN hybrid multichannel models, its convolution layers are similar to CNN-

GRU, and its RNN layers are the same as the layer used in the hybrid single-channel model in Figure 7.
In this study, the weights of the neural networks were modified in an iterative process by the backpropagation algorithm, and

using the gradient descent algorithm with a mini-batch size of 256 with the mean absolute error (MAE) loss function. Also,

Adam’s algorithm (Kingma & Ba 2014) was used to adjust the learning rate, which performed better than other adaptive algor-
ithms. The uniform Xavier Glorot model (Glorot & Bengio 2010) was used for the initial weighting of the parameters, which
obtained better answers than other methods. Using Batch Normalization in network layers did not positively affect the results.
Figure 7 | The architecture of 1D CNN and single-channel hybrid DNNmodels. (a) 1D CNN, (b) CNN-Simple RNN, (c) CNN-LSTM, and (d) CNN-GRU.
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6. EVALUATION METRICS

The results of the models were evaluated for the test set and training set. The used evaluation metrics include MAE, mean
absolute percentage error (MAPE), mean square error (MSE), root mean square error (RMSE), and R2 score:

MAE(y� _̂y) ¼ 1
N

XN
i¼1

jy� ŷj, (4)
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MAPE(%) ¼ 100
N

XN
i¼1

jy� ŷj
y

, (5)

MSE(y� ŷ) ¼ 1
N

XN
i¼1

(y� ŷ)2, (6)

RMSE(y� ŷ) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

(y� ŷ)2

vuut , (7)

R2 ¼ 1�
PN

i¼1 (y� ŷ)2PN
i¼1 (y� �y)2

(8)

In these equations, y is the real value, y ̂ is the forecast value, and �y is the mean of the real values of the samples. The R2

index indicates the amount of adaptation of the forecast values with the real values. The closer this index is to one, it indicates
that the predicted values are closer to real values and the accuracy of the model is higher.

7. RESULTS AND DISCUSSION

In this study, we implemented the 1D CNN model and hybrid DNNs, including CNN-Simple RNN, CNN-LSTM, and CNN-
GRU to forecast short-term urban water demand. At first, we used the hybrid models as single-channel ones. The architecture
of these models was according to Figure 7. The evaluation results of these models are given in Table 2. The results show that
Table 2 | Evaluation metrics for single-channel hybrid DNNs and 1D CNN for training and test data

Model

RMSE MSE R2 MAE MAPE%

Test Training Test Training Test Training Test Training Test Training

1D CNN 32.68 24.59 1,069 604.7 0.941 0.855 21.18 14.55 3.13 2.62

CNN-Simple RNN 31.20 23.83 974.0 567.9 0.946 0.863 19.79 13.86 2.92 2.50

CNN-GRU 28.09 22.29 788.8 496.7 0.957 0.881 16.58 12.24 2.51 2.21

CNN-LSTM 30.24 22.70 915.9 515.4 0.950 0.875 19.25 13.00 2.88 2.37

The evaluation metrics of the CNN-GRU model are better than other models, which is why the values of CNN-GRU rows are in bold.

Table 3 | Evaluation metrics in multichannel hybrid DNNs for test and training data

Model

RMSE MSE R2 MAE MAPE%

Test Training Test Training Test Training Test Training Test Training

Two-channel CNN-Simple RNN 28.12 23.21 792.4 538.8 0.956 0.869 16.76 13.30 2.52 2.43

Two-channel CNN-GRU 25.01 20.25 626.1 410.2 0.966 0.901 13.34 10.06 2.03 1.85

Two-channel CNN-LSTM 27.66 21.57 765.2 465.4 0.958 0.888 16.26 11.41 2.47 2.07

Three-channel CNN-Simple RNN 25.13 20.38 634.1 415.3 0.955 0.899 13.71 10.36 2.11 1.90

Three-channel CNN-GRU 23.92 19.64 574.4 385.9 0.959 0.907 12.38 9.53 1.92 1.75

Three-channel CNN-LSTM 25.39 20.88 647.7 436.0 0.954 0.895 14.08 10.84 2.17 1.98

Four-channel CNN-Simple RNN 24.25 19.87 588.1 394.9 0.968 0.905 12.56 9.68 1.90 1.77

Four-channel CNN-GRU 22.98 19.45 528.3 378.4 0.971 0.909 10.70 8.96 1.65 1.64

Four-channel CNN-LSTM 24.66 20.60 608.0 424.4 0.967 0.895 12.77 10.91 1.94 2.04

Five-channel CNN-Simple RNN 24.42 19.53 597.0 381.5 0.967 0.908 12.87 9.16 1.94 1.67

Five-channel CNN-GRU 23.11 18.86 534.5 355.8 0.971 0.914 11.35 8.40 1.72 1.54

Five-channel CNN-LSTM 24.09 19.36 580.9 374.8 0.968 0.910 12.48 9.10 1.89 1.65

The evaluation metrics of the CNN-GRU model are better than other models, which is why the values of CNN-GRU rows are in bold.
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Figure 9 | (a) Forecast and real values in four-channel hybrid models and 1D CNN. (b) The forecast error for each model over time.
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Figure 10 | Histogram of the frequency distribution of the forecasting error in four-channel hybrid models and 1D CNN.
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the combination of CNNs and RNNs (hybrid DNNs) improves the forecast results and can increase the accuracy of forecast-
ing water demand. Among the hybrid models, the single-channel CNN-GRU obtained better results than other single-channel
models. In the next step, we increased the number of 1D CNN channels in the hybrid models. Increasing the number of 1D

CNN channels resulted in better results in all models compared to the single-channel model.
Table 3 shows the evaluation metrics for the hybrid DNNs with two to five CNN channels. As is clear in this table, the

evaluation metrics in all the hybrid DNNs improve with the increase in the number of up to four CNN channels. The multi-

channel CNN-GRU model with two to five channels has better evaluation metrics than other hybrid models. By increasing
the number of CNN channels from four to five, there was no noticeable change in the results; for this reason, we presented the
four-channel CNN-GRU model as a proposed model. However, the evaluation metrics on training data in the five-channel
models are better than the four-channel models. Figure 8 shows the architecture of the multichannel CNN-GRU. According

to this figure, filters of different sizes have been used in the convolution layers on each CNN channel. The variety of filter sizes
can extract more diverse features compared to single-channel hybrid models, and ultimately increase the accuracy of forecast-
ing the results. However, with the increase in the number of CNN channels, the training time of the model increases.

Figure 9(a) shows the actual and predicted demand values by all four-channel models and 1D CNN for 1 week from the
initial, middle, and end of the test data. Figure 9(b) presents these models’ forecast errors over time. Although all the
models predict the trend of changes and the minimum and maximum demand values well, hybrid models have much
://iwa.silverchair.com/aqua/article-pdf/73/3/380/1393082/jws0730380.pdf



Figure 11 | MAPE, MAE, RMSE, and R2 in four-channel hybrid models and 1D CNN for various time horizons.
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better accuracy than the 1D CNN model. In the four-channel CNN-GRU, there is a better agreement between the forecast

and actual values than in other hybrid models. This issue is evident in Figure 9(b), which shows these models’ forecast
errors over time.

Figure 10 shows the frequency of forecast error for four-channel hybrid models and 1D CNN for all test data. In the four-

channel CNN-GRU model, the frequency of forecast error near zero is much higher than in other models. It shows the super-
iority of this model over the other two hybrid models and the 1D CNN model.

We examined the effect of the forecast horizon on the results. The evaluation metrics of the four-channel hybrid model and
1D CNN were calculated for the forecast horizons of 1, 3, 6, 12, and 18 h. Figure 11 shows the values MAPE, MAE, RMSE,

and R2 for these models for different forecast horizons. As is evident, the accuracy of the models increases with the decrease
in the forecast horizon. Also, the hybrid models have better evaluation metrics on all forecast horizons than the 1D CNN
model. In hybrid models up to the 6-h forecast horizon, they have almost similar evaluation metrics, but for horizons of

more than 6 h, the four-channel CNN-GRU performs better than the other two models.

8. CONCLUSIONS

To supply adequate water and with the appropriate pressure for consumers in urban WDNs, there is a need for intelligent

operation management. One of the requirements of intelligent operation management in WDNs is to forecast short-term
water demand at an hourly interval for the next 24 h. In this study, we implemented combined CNN and RNN models to
forecast short-term urban water demand. Hybrid models included CNN-Simple RNN, CNN-GRU, and CNN-LSTM. The
results showed that the combination of CNNs and RNNs has forecast accuracy much better than the 1D CNN model.

Among the hybrid models, the CNN-GRU is superior to other models. On the other hand, increasing the number of CNN
channels improved the evaluation metrics, and the four-channel CNN-GRU model had higher accuracy than the other
two hybrid models. Thus, we proposed the four-channel CNN-GRU for forecasting water demand. However, it is worth

noting that the five-channel models had better evaluation metrics on the training data than the four-channel models. The
accuracy of the models increases with the decrease in the forecast horizon. The four-channel CNN-GRU has almost the
same accuracy as other hybrid models (CNN-Simple RNN and CNN-LSTM) for forecast horizons of up to 6 h, but it is

better than other hybrid models for forecast horizons of more than 6 h. As we mentioned, CNNs can extract features, and
RNNs can learn long-term dependencies between data, and combining these two networks can forecast water demand
with higher accuracy than 1D CNN. Therefore, hybrid DNNs can be suggested for forecasting other time series issues.
During this study, we manually tuned the hyperparameters. However, there are several methods available for automatic

hyperparameter tuning, such as random search, grid search, and Bayesian optimization. By utilizing these methods, it is poss-
ible to obtain models with better accuracy, although it will take a longer time to train the model. Reducing the training time of
the model while maintaining its accuracy is a challenging task. In general, models that predict future values based on time

series have the weakness that if one of the factors that affect water demand changes significantly compared to its past,
such as the price of water, it can adversely affect the model’s results. Therefore, it is important to consider this issue when
using such models.
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