Water Infrastructure, Ecosystems and Society © 2022 The Authors AQUA – Water Infrastructure, Ecosystems and Society Vol 71 No 5, 642 doi: 10.2166/aqua.2022.031 # Development of a new comprehensive framework for the evaluation of leak management components and practices Cansu Bozkurta, Mahmut Firatb,* and Abdullah Ateşc - ^a Technical Sciences Department, Ardahan University, Ardahan, Turkey - ^b Civil Engineering Department, Inonu University, Malatya, Turkey - ^c Computer Engineering Department, Inonu University, Malatya, Turkey - *Corresponding author. E-mail: mahmut.firat@inonu.edu.tr #### **ABSTRACT** Leaks cause significant operational problems in water distribution systems (WDSs). The methods for managing leaks are time-consuming and costly. Therefore, the suitability and applicability of water loss management (WLM) methods should be analyzed. In this study, a new comprehensive framework was proposed using the scoring table to evaluate and highlight the reliability of data and to analyze the current application level of leakage management practices in WDSs. The developed framework consists of 60 sub-components determined to cover the WLM practices. A scoring structure was created to analyze these sub-components in measurable criteria. The developed framework was applied to three pilot administrations, and the results were discussed. The data quality (quite good, good, doubtful, poor, and quite poor) is classified according to the application level of the leakage management practices. The data quality of leakage management components and the application levels of practices are at good level in Administrations I and II and at moderate level in Administration III. The weaknesses and strengths in administrations were defined in the scope of leakage management, and the components that need improvement are determined dynamically. This framework will provide more accurate data for sustainable leakage management in the administration and make field applications more systematic. Key words: current status analysis, data quality assessment, leakage, leakage management practices, scoring structure ## **HIGHLIGHTS** - The current application level of leakage management practices was evaluated. - A new model was developed for evaluation. - The developed model consists of 60 leakage management practices. - A scoring structure was created to analyze these sub-components. - The model was tested using field data. ## INTRODUCTION Failures and leaks occur in mains and service connections in water distribution systems (WDSs) due to various factors. Non-revenue water (NRW) is defined as water delivered to WDSs but not charged (Lambert *et al.* 1999). The NRW volume includes the components of the real losses, apparent losses, and unbilled authorized consumptions (Pearson 2019). Globally, annual leakage rates in WDSs are in the range of 25–30% (European Commission 2014), while the NRW rate is around 30% (Liemberger & Wyatt 2019; Berardi & Giustolisi 2021). A significant part of water resources is lost in the network due to leakages. While the leakage rate is more than 50% in developing countries around the world, this rate is between 3 and 7% in well-maintained networks in developed countries (Puust *et al.* 2010; Gupta & Kulat 2018; Duan *et al.* 2020; Moslehi *et al.* 2021). Moreover, according to the World Bank, nearly 48 billion m³ of water gets lost annually from WDSs, costing US \$14 billion to water utilities (Mutikanga *et al.* 2013; Gupta & Kulat 2018). In the report published by the Turkish Water Institute (SUEN), according to the data from 25 administrations, the average NRW rate is 42%, with the lowest and highest values being 22 and 67%, respectively (SUEN 2020). In addition, the total annual economic loss due to NRW in the administrations exceeded 7 billion Turkish Liras in the year 2017 (SUEN 2017). This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY-NC-ND 4.0), which permits copying and redistribution for non-commercial purposes with no derivatives, provided the original work is properly cited (http://creativecommons.org/licenses/by-nc-nd/4.0/). Trends in climate change and global warming negatively affect surface and groundwater resources in terms of quantity and quality (IPCC 2015). In systems with high leakages, more water is supplied to the systems to meet the demand, existing resources are insufficient, and as a result, new resources are sought, and access to clean water becomes increasingly difficult with excessive water consumption. Therefore, these negative effects of NRW or leakages should be minimized (Bakhtiari et al. 2020). Reducing all water loss components to zero is neither technically possible nor economically viable. The water loss components should be accurately assessed and prioritized for minimizing loss (Al-Washali et al. 2020). In the literature, basic methods, including pressure management (PM) (Kanakoudis & Gonelas 2016; Creaco & Walski 2017; Muhammetoglu *et al.* 2018), district metered area (DMA) planning (Ferrari & Savic 2015; Campbell *et al.* 2016), active leakage control (ALC) (Berardi *et al.* 2015; Candelieri *et al.* 2015; Cabral *et al.* 2019; Lipiwattanakarn *et al.* 2019), leakage modeling (Guo *et al.* 2021), failure repair, and maintenance and pipe material management (Deidda *et al.* 2014; Marchionni *et al.* 2016; Agathokleous & Christodoulou 2017), have been applied for the reduction, prevention, and management of leakages. However, before applying these methods, it is important to analyze the current state of the system and the current application levels of leakage management practices, in terms of reducing the initial investment and operation–maintenance costs (Yilmaz *et al.* 2021a). A detailed analysis of the current state of the network, operating conditions, and system components is the first and critical step in developing a water loss management (WLM) strategy (Liemberger & Farley 2004; Farley & Limberger 2005). In WDS data, equipment and technical capacity should be sufficient for ALC, and failure repair and maintenance and PM strategies should be applied for ensuring a sustainable WLM. The network characteristics and operating conditions should be monitored regularly in order to define the prevailing situation correctly (Vicente *et al.* 2016; Monsef *et al.* 2018; Moslehi *et al.* 2021). The standard water balance table, minimum night flow (MNF), and component analysis (with failure records) methods have been applied for the estimation of leaks in WDSs. The failure rates, network conditions, and field data used in these methods are highly effective in estimating leaks (Amoatey *et al.* 2018). Unreported leaks, which constitute a significant part of the leaks in WDSs, occur mostly at the service connections. The ALC in DMAs should be applied in order to determine and reduce these leaks in the WDSs (Boztaş *et al.* 2019). Water utilities work hard to reduce water losses, but this results in high costs. To control water loss, first, the relative contribution to the loss of the various components should be identified. Next, how much would have to be spent for loss reduction in a particular component should be considered. Based on this, what kind of investment has the greatest impact in terms of the least cost should be determined (Moslehi *et al.* 2021; Serafeim *et al.* 2022). In leakage management, the most appropriate level at which leaks can be reduced should be defined to ensure water, energy, and financial efficiency. Therefore, the current state of the systems should be analyzed, the application levels of the methods should be determined, and the requirements should be defined (Yılmaz *et al.* 2021b). A new algorithm was proposed by Firat *et al.* (2021) in order to define the economic leakage level (ELL) in WDSs. In this algorithm, parameters that include the consideration of the current state of the administration (current leakage rate, personnel, and equipment) and the current application levels of methods (DMA, PM, and ALC practices) are considered as the fundamental component (Firat *et al.* 2021). Wu *et al.* (2022) proposed a comprehensive solution framework for anomaly detection and localization by integrating data-driven analytics with hydraulic model calibration. The proposed approach has been proved to be effective at analyzing the monitoring data for flow and pressure to detect anomaly. Leaks cause water resource inefficiency, an increase in operating costs, a decrease in service quality, and an increase in customer complaints. In the literature, studies were carried out within the scope of determining and analyzing leaks according to various methods in general. However, the methods applied to manage leaks are generally time-consuming and costly. Therefore, the current state of the administration, personnel, technical, and financial capacity should be examined, and the applicability of methods and the application levels of the currently applied methods should be analyzed on the basis of measurable, appropriate, and objective criteria. Therefore, in this study, a new comprehensive framework is proposed using the scoring table to evaluate and highlight the reliability of data and to analyze the current application levels of leakage management practices in WDSs. The developed framework consists of 60 sub-components determined to cover the WLM practices. The purpose of this study is not to calculate the level of leakage or the ELL. Rather, the quality of the data used in leakage management and analysis and the application levels of the applied methods are questioned. Thus, the data quality (quite good, good, doubtful, poor, and quite poor) is classified according to the application levels of the leakage management practices. The class of the component is determined according to the examination and evaluation made in the administration. This classification is not made by the personnel in the
administration. Accordingly, it will be possible to provide more accurate data for sustainable leakage management in the administration and make field applications more systematic. ## Comprehensive evaluation framework for leakage management practices Leaks are one of the most fundamental problems in transmission lines and distribution systems. Some of the leaks that occur in WDSs are openly exposed (reported leaks). However, a significant part of the failures are unreported failures (Lambert et al. 1999; Pearson 2019). Passive leak control is applied to manage reported failures, while active leak control is applied to reduce unreported leaks. The most basic methods applied to reduce leaks are PM (García-Ávila et al. 2019; Özdemir et al. 2021), DMA planning and MNF analysis (Negharchi & Shafaghat 2020; Marzola et al. 2021), failure management (Arai et al. 2010; Kahn et al. 2020), and leak detection with regional or local acoustic equipment (Giaquinto et al. 2018; Shukla & Piratla 2020). However, these methods require team, equipment, institutional and personnel experience, and financial capacity. Therefore, the prevailing situation in the administration, its technical and institutional experience, applicability, and the necessity of methods should be evaluated in detail. Moreover, the current levels of the application of the WLM methods applied in the administration should be analyzed. The methods/processes that can be applied for the effective and sustainable management of the WLM components in the administration should be determined on the basis of this analysis. The main problems encountered in WLM can be given as follows: (i) the lack of a roadmap for data collection, monitoring, and analysis, (ii) the lack of a methodology that evaluates the application levels of leakage components in detail, (iii) the absence of a method that identifies the weaknesses/strengths and the risks based on the current situation analysis, and (iv) the lack of setting appropriate targets based on the current situation analysis. Therefore, it is important to develop a current status evaluation framework for devising an effective, sustainable (which is applicable), and a long-term WLM strategy in administration. A sustainable strategic WLM model, which includes a current condition evaluation matrix, a data matrix, a performance evaluation system, and a method recommendation matrix, has been proposed and outlined by Bozkurt *et al.* (2022). In this study, a new comprehensive framework for leakage management practices was developed on the basis of the WLM model proposed by Bozkurt *et al.* (2022). This assessment model is directly associated with the data used in leak analysis. Thus, it is planned to define the components that lack data or methods, to make gap analysis, to define the components that need improvement, and to identify the weaknesses and strengths of the system. In this model, a total of 60 components, which are grouped as 'Basic-Level Practices', 'Moderate-Level Practices', and 'Advanced-Level Practices', were defined to cover leakage management (Tables 1–3). The applicability, requirements (financial, data, technological capacity, and experience), and difficulty levels of the components in the field are considered in this grouping. While the scoring results in the administration are evaluated separately for these levels, a general evaluation is made for the whole matrix at the same time. The aim here is to reveal the current state of the administration at each implementation level. Thus, information that will form a reference in determining the priority sub-components in improvement will be produced. The leakage components are scored between 0 and 5 (0 point (quite poor), 1 point (poor), 2 points (insufficient), 3 points (moderate), 4 points (good), and 5 points (quite good)) in the developed framework. Components with 0 and 1 points constitute weakness in leakage management (if data quality is poor, the components should be improved). The priority target for these components is determined as 3 points (moderate level), then 4 points (good level), and finally 5 points (quite good level). Similarly, components with 2 and 3 points constitute weakness in leakage management (if data quality is questionable, it needs improvement); however, they could be used in analysis. For these components, the priority target is 4 points (good level) and then 5 points (quite good level). On the other hand, if a component has a score of 4 (good data quality) or 5 (if data quality is very good, the current status should be kept), this component constitutes the strength of the administration. The final target for components with a current score of 4 were defined as 5 (quite good level) based on technical and economic criteria. Components with a current score of 5 are evaluated as 'existing conditions should be kept'. ### **ANALYSIS AND DISCUSSION** The framework proposed in this study was tested with real field data in pilot administrations. For this, the Bursa Water Administration (Administration 1), the Kayseri Water Administration (Administration 2), and the Denizli Water Administration (Administration 3) in Turkey were chosen as study areas (Figure 1). Administration 1, located in the west of Turkey, has a surface area of 10,820 km². This administration has a network main line length of approximately 7,100 km. The water requirement of the administration is met from surface and underground water resources. Administration 2, located in the west of Turkey, has a surface area of 12,321 km². This administration has a network main line length of approximately **Table 1** | The scoring structure for basic-level components | Basic-level components | Quite poor
0 | Poor
1 | Insufficient
2 | Moderate
3 | Good
4 | Quite good
5 | |--|---|---|--|--|---|--| | Main length | No digital
network plan,
main length
unknown | Main length
unknown, only
some of the
available lines exist
in paper/CAD, and
no updates or field
calibrations. | Main length is
approximate, some
(25–50%) have a
GIS database, and
some are in CAD/
paper, no
scheduled updates. | A certain part of the
network length (50–
75%) has a GIS
database, and there
is no systematic
update program. | A certain part of the
network length (75–
90%) has a GIS
database, and
updates are
regularly within a
certain plan. | More than 90% of the network length has a GIS database, updates are regularly within a certain plan, and the unknown data rate is below 10%. | | Number of service
connection | No digital
network plan,
the number of
connections
unknown | No correct data for
service
connections, part of
network plan on
paper, part on
CAD/GIS (0-25%),
and no field
updates. | Except for renewed areas, some of the old regions (25–50%) have a GIS database, and no planned updates. | Except for renewed areas, some of the regions (50–75%) have a GIS database, and update is available within the schedule (1–2 years). | Except for renewed areas, there is a GIS database of 75–90% of the old regions, and updates are made regularly within a certain plan. | Except for renewed areas, more than 90% of the old regions have a GIS database, and updates are made regularly within a certain plan. | | Number of valves | No digital
network plan
and the
number of
valves
unknown | No correct data, a part of the network plan on paper, a part on GIS (0–25%), and no field calibration. | Except for renewed
areas, some regions
(25–50%) have a
GIS database, and
no planned
updates. | Except for renewed areas, some regions (50–75%) have a GIS database, and there is an update (1–2 years). | Except for renewed
areas, some regions
(75–90%) have a
GIS database, and
updates are regular. | Except for renewed
areas, some regions
(more than 90%)
have a GIS database,
and updates are
made within a plan. | | Planning of
Information
Management
System (IMS) | No work to
develop the
IMS | The basic systems (CIS, CAD) are available, and data are kept on a unit basis. | Some units have
information
systems, keeping
and verifying data
on a unit basis. | There are some IMSs,
in other units, they
are at planning
stage, and
integration is being
planned. | Units have IMS, data
are kept, some
systems have
integration with one
another, and
integration of all
systems is planned. | There are integrated information systems, data are kept regularly, and systems are integrated. | | Water Resources,
System Input
Flow
Management
System (SCADA) | No work for this component | No data for
monitoring,
planning for main
resource is in
progress. | There is SCADA for monitoring of main resource and input flow. | A certain part (more
than 50%) of the
sources feeding the
system is monitored
by SCADA. | The sources that feed
the system are
monitored with
SCADA (more than
90%). | The resources are monitored with the SCADA (more than 90%), and there is integration with other
systems. | | WLM Database
(SCADA
Distribution) | No work to
monitor data
with SCADA | No SCADA
monitoring system
for system input
flow and planning
for main reservoirs. | There is SCADA for
monitoring of main
resource and
reservoir, and no
monitoring in the
system. | Input flows/reservoirs
(more than 90%)
are monitored by
SCADA, and flow/
pressure are
monitored in pilot
DMA. | Input flow in system/ DMAs (more than 90%) are monitored with SCADA, and there is integration with some databases. | Input flow in system/ DMAs are monitored by SCADA (more than 90%), and there is data sharing with other systems. | | Distribution System
GIS Database | No work for the
GIS-based
distribution
system | Network/fittings
unknown, some of
the available lines
exist in paper/CAD,
and no updates. | A part of the system
(25–50%) has a
GIS database, the
other part is in
CAD, and no
scheduled updates. | A part of the system (50–75%) has a GIS database and map, and updates are made periodically. | A part of the system
(75–90%) has a GIS
database and a
digital map, and
updates are made
periodically. | More than 90% of the
system has a GIS
database and a
digital map, and
there is a systematic
update program. | | CRM | No work for
CRM | Calls are kept in
Excel, there is no
detailed analysis
reporting, and a
CRM is being
planned. | Calls are received
with CRM, analysis
is not made, and
feedback is
provided for
customers. | Calls are received by
CRM, no instant
team monitoring,
and analysis is
made with
annually. | Calls are managed
with CRM, teams
are directed and
monitored, and
analyses are
available. | Calls are managed with
CRM, teams are
directed and
monitored, and
detailed analyses are
available with GIS
integration. | Table 1 | Continued | Basic-level components | Quite poor
0 | Poor
1 | Insufficient
2 | Moderate
3 | Good
4 | Quite good
5 | |--|--|--|--|---|--|---| | Analysis of factors
affecting real
losses | No work
available for
this analysis | There are not enough data for analysis, and improvement is being planned. | There are enough data, some components are analyzed, and MNF is analyzed in a DMA. | The factors in
reservoirs are
analyzed, and MNF
and flow-pressure
analysis are made
in pilot DMA. | Leaks are analyzed in
connections, mains
are analyzed
separately, and
flow-pressure
analysis is made. | Failures in connections
and mains are
analyzed separately,
and flow-pressure
analysis is performed
with GIS integration. | | Strategy
development for
detection of
leakages | No work for real
loss reduction
and
management
strategy | There are no data for
monitoring the
system, and field
data are not enough
for analysis and
strategy. | There is no strategic
plan, randomly
selected areas are
audited, and
improvement is
being planned. | There is a PM with
flow-pressure
analysis in a DMA,
and short-term
strategy is being
planned. | There are PM, ALC,
MNF, and speed of
repair quality, mid-
term prevention-
monitoring strategic
plans. | There are PM, speed
and quality of
repairs, ALC,
material
management, long-
term strategic plans
are available. | | Active Leak Control
(ALC) Program,
Plan and Strategy | No ALC
operation | There is no ALC
strategy, only in
case of complaints,
detection is made,
data are
insufficient. | DMA planning, MNF
analysis and
detection are made
in the region where
leakages are high. | planned in a DMA,
leak detection is | There is an ALC strategy and roadmap for methods, and there is a leak detection team C&B analysis standard. | There is an ALC strategy and roadmap for methods, there is a C&B analysis standard, and GIS integration is available. | | DMA planning | No DMA
planning | There is no DMA
plan, data are not
enough, and
improvement is
being made. | There is a pilot DMA in renewed areas or regions with high failure, and data are monitored in this DMA. | There are DMAs in a part of the systems (50–75%), and MNF analysis and leak detection are made. | There are DMAs in a part of the systems (75–90%), MNF analysis is made, and there is a C&B standard. | There are DMAs in a certain part of the system (75–90%), MNF and C&B analysis are made, and GIS integration is available. | | MNF analysis | No MNF analysis
work | There is no ALC-DMA strategy, data are not enough, and improvement is being planned. | MNF analysis and monitoring is made in the pilot DMA. | - | MNF analysis is made
in a certain part of
the system (75–
90%), leak
detection is made,
and there is a C&B
standard. | MNF analysis is made
in a certain part of
the system (75–90%),
leak detection is
made, and C&B is
monitored by GIS. | | Failure repair speed
and time analysis
and improvement | No failure repair
speed and time
improvement
work | Reported failures are
saved on paper,
teams are managed
by phone, and no
detailed reporting. | Failures are saved in Excel, teams are managed by phone, improvement is made for CRM, and repair duration is estimated. | Calls are managed
with CRM, teams
are not monitored
instantly, and
improvement is
being planned. | Calls are managed
with CRM, teams
are managed
instantly, and
graphical analysis is
available. | Calls are managed with
CRM, teams are
managed instantly,
and graphical
analysis and GIS
integration are
available. | | Systematic
measurement and
monitoring of
real loss
components for
water balance
calculations | There are no works to measure the real loss components in the field. | The technical data are not sufficient to monitor the reservoirs and WDS. Planning is being made for improvement | Controls are made
randomly in
reservoirs, MNF
analysis is planned
in DMA, and
technical
background is
improved. | A certain part of the reservoirs are inspected, and leaks are determined with MNF analysis in a limited number of pilot DMAs. | Reservoirs and DMAs are monitored regularly, and leaks are determined and monitored on site with MNF in DMAs. | Reservoirs and DMAs are monitored regularly, leaks are determined on site by MNF analysis in DMAs, and GIS integration is available. | | Performance
Monitoring
System (PMS)
and Integration
of Systems | No work for PMS and integration | There is no PMS, and
the data are not
enough for detailed
analysis. | Performance analysis
is made in Excel
with the data
received by the
user, and
integration is not
enough. | Performance analysis
is made in Excel,
and integration of
systems is being
planned. | There is a PMS, some
systems have
integration, and
integration of all
systems is being
planned. | Performance analysis in
DMAs is done
through the PMS,
and GIS integration
is available. | Table 1 | Continued | Basic-level components | Quite poor
0 | | | Good
4 | Quite good
5 | | |---|--|--|---|---|--|---| | Monitoring of GIS
data update and
verification
practices | No monitoring of
GIS data
update-
verification
practices | Experience is not
enough for
monitoring of GIS
data update, and
improvement is
being planned. | There is a GIS unit,
the departments
control the data
entry and update,
there is no report,
and the monitoring
is insufficient. | There is a GIS unit,
data entry-update
are controlled by
this unit, and data
updates are made at
least 1–6 months. | There is a GIS unit,
data entry and
updating are
controlled by this
unit, a report on
data updating is
prepared at least
monthly. | There is a GIS unit,
data entry and
updating are
controlled, a report
is prepared at least
weekly, unit leaders
responsible for data
entry are informed. | | Performance
analysis and
monitoring for
DMAs | No performance
analysis in
DMAs | In DMAs,
the NRW rate indicator is monitored annually, and there are not enough data for other indicators. | In DMAs, basic-level indicators (based on water balance) are monitored, and work is done for process indicators. | In DMAs, technical–
economic process
indicators are
monitored by PMS,
and works are
made for C&B
analysis. | In DMAs, technical—
economic ILI and
UARL are analyzed
and monitored, the
target is defined,
and C&B analysis
is made. | In DMAs, technical–
economic ILI,
UARL, and ELL are
monitored, the target
is defined, C&B
analysis is made, and
GIS integration is
available. | | Analysis and
monitoring of
network failure
maintenance–
repair cost | No work to
calculate
maintenance–
repair cost | There are not enough
data experience for
repair cost
calculation, detailed
field data are not
kept, and costs are
estimated. | Failure repair cost is
calculated, some
components are
predicted, and
planning is made
to improve
analysis. | The repair cost in mains and connections is analyzed (every 1–2 years), and all components are considered. | The repair cost in mains and connections is analyzed by the model and updated annually, and all components are considered in the analysis. | The repair cost in mains and connections is analyzed by the model and updated annually, and unit costs per connection and main are known. | | Analysis and
monitoring of
network
operating
efficiency | No work to
analyze this
component | Operating efficiency
approximately is
estimated, and
improvement is
being planned. | Annual report is
prepared for
efficiency, and
income and
expenses are
presented to the
manager. | A report is prepared
every 6 months for
efficiency, and
income and
expenses are
presented to the
manager. | Operational efficiency
is regularly
analyzed and
monitored annually,
and revenues and
costs are monitored
regularly. | is regularly analyzed and monitored | 3,000 km. The water requirement of the administration is met from surface and underground water resources. Administration 3, located in central Anatolia in Turkey, has a surface area of 17,000 km². This administration has a network main line length of approximately 8,000 km. The water requirement of the administration is met from underground water resources. An on-site examination and scoring was made on the basis of the scoring tables for each variable in accordance with the situation prevailing in the administration. These components are not scored by the administration's technical staff or decision makers. In order to define the current state of the administration, each administration was visited separately by the authors (expert team in this article) at different times in 2021. In this context, all practices in the administration were evaluated in units, namely, the Drinking Water Management Department, the SCADA Department, the GIS Department, and the Information Technology Department. The activities and reports of the departments were examined to evaluate the quality of the practices for the determination of leakage components in the field. In addition, the quality of the system's basic data was evaluated by the queries made in the SCADA, GIS, and Information Technology Departments. ## **Evaluation for basic-level practices** The score results and targets for basic-level practices in administrations are evaluated separately (Table 4). Gradual targets were defined by considering the current scores of the components in the basic-level practices (Table 4). If the current scores of the variable are 0 and 1, the primary target for these components is defined as a moderate-level target (Target I). Then, the targets defined for this variable are a good-level target (Target II) and a very good-level target (Target III), respectively. If the current scores of the variable are 2 and 3, the primary target for these components is defined as a good-level target (Target II). Then, the target defined for this variable is quite a good-level target (Target III). If the current score of the variable **Table 2** | The scoring structure for moderate-level components | Moderate-level components | Quite poor
0 | Poor
1 | Insufficient
2 | Moderate
3 | Good
4 | Quite good
5 | |---|--|---|---|--|---|---| | Operating pressure | No pressure
measurement | nent made in case of at randomly complaints, data are not kept, and there is no systematic measurement. made in case of at randomly determined points, and in case of need, there is no systematic and measurement plan. | | Measurements are made and monitored at the entrances of the pilot DMA, where the topography changes a lot. Failures are high. Calibration is done very rarely. | There is a planned and regular PM strategy in DMAs, it is regularly monitored by SCADA, and the average calibration period of the devices is 1–2 years. | There is a planned and regular PM strategy in DMAs, and it is regularly monitored by SCADA. Calibration is made regularly (average 1 year). | | Roadmap for
managing WLM
components | No work for any
roadmap for
managing
water loss
components | There is not enough experience about WL practices, and there is only a flow chart for the measurement systems. | It is planned to prepare a roadmap for the basic methods in WLM and to determine the path for field works, and the flow charts are insufficient. | There is a program and road map for the management of main and basic components, there is no C&B analysis standard, and flow charts are insufficient. | There is a strategic plan for the WLM, a roadmap is ready for the methods and field works, the C&B standard was defined, and flow charts were created. | There is a strategic plan for the WLM, a roadmap is ready for the methods and field works, the C&B standard and flowcharts were defined, and reports are available. | | GIS-based valve
failure database,
maintenance–
repair and
control program | No work for this component | GIS valve failure
database is not
available,
maintenance is
done in case of
failure, and data are
kept in paper. | There is a GIS-based valve failure database, maintenance is done in case of failure and kept in Excel, and there is no planned maintenance program. | There is a GIS-based valve failure database, valve maintenance is done annually in selected regions, and the GIS database is updated in case of failure maintenance. | There is a GIS-based valve failure database, a systematic program is created annually for valve maintenance, and the GIS database is regularly updated. | There is a GIS-based valve
failure database, a
systematic maintenance
is created based on the
failure density, and the
GIS database is
regularly updated. | | Failure
Management
System
(integrated with
GIS) | No work for this component | Data are kept in Excel, detailed analysis is not made, and improvement is being planned. | Failures are received
through the CRM,
analysis inquiry is not
made, and feedbacks
for customers are
made. | Faults are managed with
CRM, there is no team
monitoring, analysis is
made annually, and
feedbacks for customers
are made. | There is a regular failure
system, calls are
managed with CRM,
teams are managed
instantly, and graphical
analysis is available. | There is a regular failure
system, calls are
managed with CRM,
teams are managed
instantly, and analysis is
made with GIS. | | SCADA Reservoir
Monitoring
System and
Database | No work for this component | Levels are measured,
data are kept in
Excel, and flow
rates are not
monitored by
SCADA. | Levels/flows in main
reservoirs are
monitored with the
SCADA system. | Levels/flows in a part of
the reservoirs (more
than 90%) are
monitored by SCADA,
and no integration with
other systems. | Levels/flows (more than 90%) are regularly monitored by the SCADA, and there is integration with some databases. | Levels/flows are regularly
monitored by the
SCADA system, and
integration is available
(GIS-based water
balance analysis). | | Network Maintenance and Repair Management (MRM) System (with GIS) | No work for this component | There is no network MRM plan, data are kept in paper form, and no details for analysis. | Data for network MRM is kept on Excel, and planning is made for system design. | Network MRM practices
are made through the
system, there is no
systematic planning,
and analysis is done
over total data. | Only in DMAs, network
MRM data are entered
into the GIS regularly,
and detailed analyses
are made with GIS
integration. | There is a GIS-based
network MRM system.
Analysis is made with
GIS integration based
on the density of
failures. | | Leaks in
the
distribution
system (mains
and service
connections) | There are no studies for this component. | There is no ALC/DMA, inspection is made in the region with high complaints, and leaks are estimated. | Unplanned inspection is made in regions with complaints or is randomly determined, MNF is analyzed in pilot DMA, and leaks are estimated. | Leakages are determined
on the site on the basis
of MNF in a part of the
system (50–75%), and
loss volume is
calculated in the other
regions. | Leakages are determined
on the site according to
MNF analysis in 75–
90% of the system, and
improvement is planned
for the other regions. | Leaks are determined in
the field by MNF
analysis in more than
90% of the system. | |--|--|---|--|--|---|--| | Leaks in
reservoirs | No work for this component | Data are not enough
for analysis, there is
no inspection
program, and leaks
are not analyzed. | Main reservoirs are
monitored, there is no
systematic inspection,
and reservoirs are
randomly controlled. | A part (more than 50%) of the reservoirs is randomly selected and inspected, and the leakage volume is estimated for all reservoirs. | Reservoirs (between 75 and 90%) are inspected and controlled annually, and the leakage volume is calculated. | Reservoirs (more than 90%) are inspected and controlled annually, and the leakage volume is calculated. | | Leak detection
and repair
technical
capacity (team,
device) | No work for this component | There is only ground
microphone,
personnel is
insufficient, there is
no leak detection
team. | There is a ground microphone and detection team, detection quality in the mains is average, and leaks in connections are detected with low accuracy. | Technical capacity and personnel experience is average, there is a ground microphone and at least one team, leak detection is done with average (50–75%) accuracy. | Technical capacity/
personnel experience is
good, there is a regional
recorder and ground
microphone, and
detection accuracy is
high (more than 75%). | Technical capacity/
personnel experience is
good, there is a regional
recorder and ground
microphone, and
detection accuracy is
high (more than 90%). | | Analysis of factors
affecting the
failure | No work for this component | No failure
management
system, data are
kept on paper, and
no detailed analysis
and evaluation | Data are kept on Excel,
and records and
analysis are not
detailed but only
graphically based on
some pipe properties. | Data are recorded, spatial and temporal analyses are made due to the network characteristic, and planning is made with hydraulic/environmental factors. | Data in mains/ connections are saved, spatial/temporal analyses are made based on physical and environmental factors, and GIS integration is being planned. | Data in mains/
connections is kept, GIS
integration is available,
and spatial/temporal
analysis is made due to
physical, environmental,
and hydraulic factors. | | Pressure-flow
leakage failure
analysis | No work for this component | Data are not enough
for pressure-flow
analysis, and
improvement is
being planned. | The relationship between
pressure and flow is
analyzed in a DMA
and compared with
field and improvement
is being planned. | The relationship between pressure and flow is regularly monitored by SCADA in pilot DMAs, pressure-failure leakage is monitored, and analysis is done. | The relationship between pressure and flow is monitored by SCADA in DMAs, pressure-flow fault analysis is done, and regions that need PM are known. | Flow-pressure leaks are
monitored by SCADA in
DMAs, regions requiring
PM are known, and
C&B is analyzed. | | Leak management
and prevention
in reservoirs | No work for this component | Data are not sufficient
to monitor the
reservoir, and there
is no control and
maintenance
program. | Unplanned inspections are made in reservoirs, and maintenance and control program are being planned. | Maintenance is made
every 1–2 years in main
reservoirs, and regular
maintenance program
in other reservoirs is
being planned. | Annual maintenance is made regularly in main reservoirs, and leakage inspection is made every 1–2 years in other reservoirs. | Annual maintenance-
inspection is carried out
regularly in the main
and distribution
reservoirs. | Table 2 | Continued | Moderate-level components | Quite poor
0 | Poor
1 | Insufficient
2 | Moderate
3 | Good
4 | Quite good
5 | |---|--|--|--|---|---|---| | PM strategy | No work for this component | Data are not enough
for pressure-flow
analysis, and
improvement is
being planned. | The relationship between pressure and flow is analyzed in pilot DMA and compared with field improvement is being planned. | PM is applied and monitored with PRV on the basis of flow-pressure analysis in DMAs, and there is no standard for C&B/gains. | Based on flow-pressure analysis, the regions where PM is required are known, different types of PRV are used, and there is a C&B standard. | Based on flow-pressure analysis, the regions where PM is required are known, flow-sensitive or time-adjusted PRV is used, and there is a C&B standard. | | Service
connection
failure/leak
prevention
strategy | No work for this component | There are not enough data about failures in connections, and data are not suitable for strategy. | Awareness of the necessity of a strategic plan for failure prevention, planning for material management in a DMA. | There is pipe material management in some DMAs, there is a PM strategy based on the flow-pressure analysis, and a short-term strategic plan is made. | Factors are analyzed in DMAs, basic prevention strategic plans are in place and constantly updated, and planning for temporal and spatial inquiry is made with GIS. | Factors are analyzed in DMAs, basic prevention and mitigation strategic plans are in place and constantly updated, and temporal and spatial inquiry is made with GIS. | | Monitoring of real
loss
performance
indicators | There are no studies for this component. | There are not enough data, real loss rate is analyzed, and basic indicators are being planned. | There is an analysis
template in Excel for
basic indicators, and
advanced indicators
are not analyzed. | There is an analysis
template in Excel for
process indicators, the
advanced indicators are
being planned, and an
annual report is being
prepared. | The ILI, ELL, and process indicators for real losses are systematically calculated, changes are monitored and reported. | The ILI, ELL, and process indicators are systematically calculated and reported, and GIS integration is available. | | Monitoring PM practices | No work for this component | Flow-pressure leakage is monitored in areas where PM is applied, and work is planned for process indicators. | Flow-pressure failure is monitored in PM areas, basic indicators are calculated, and advanced indicators are not analyzed. | Flow-pressure failures and process indicators are monitored in areas where PM is applied, and works are made for the analysis of advanced indicators. | Flow-pressure failures and process indicators are monitored, ILI andUARL are monitored, and C&B analysis is being planned. | Flow-pressure failures and ILI and UARL are monitored, and C&B analysis is made and monitored. | | Monitoring the
MNF practice | No work for this component | MNF and pressure
flow in DMAs are
monitored, and
planning is made
for the basic and
advanced
indicators. | MNF and flow rates saved in DMAs are calculated, and works are made for other indicators and economic components. | MNF and gains/benefits
are calculated and
monitored in DMAs,
and costs/economic
components are
monitored. | MNF in DMAs is
monitored by the
developed system,
benefits and costs/
economic components
are monitored, planning
is made for GIS
integration. | MNF in DMAs is
monitored by the
developed system,
benefits, costs, and
economic components
are
monitored, and GIS
integration is available. | | Monitoring of
leak detection
(team and
inspection)
practices | No work for this component | There are not enough data for monitoring, an work is being done for improvement. | Leak detection activities/inspections/ detected leaks in DMAs are kept in Excel, and reporting is done annually. | Leak detection activities/
inspections/detected
leaks are kept in Excel,
and system
development is done. | Leak detection activities/
leaks are monitored by
the system, C&B
analysis is monitored,
and GIS integration is
being planned. | Leak detection activities/
leaks are monitored by
the system, C&B
analysis is monitored
and GIS integration is
available. | |--|----------------------------|--|--|--|---|--| | Analysis and
monitoring of
the cost of real
losses | No work for this component | There are not enough data for analysis, and improvement is being planned. | Cost analysis is made in
the pilot region and
planning is made for
the overall system. | In the system, loss costs
are analyzed (1–2
years), and regional
changes are not
analyzed. | In the system, loss costs
are analyzed regularly
(annual), and GIS
integration is being
planned. | In DMAs, costs are calculated regularly and integrated with GIS, and regional variations are analyzed. | | Analysis and
monitoring of
leak detection
equipment-
monitoring cost | No work for this component | There are not enough data for the cost analysis, and work is being done for improvement. | The cost of this component is analyzed in the pilot region and planning is made for the overall system. | In the system, the costs of
this component are
analyzed (1–2 years),
and regional variations
are not analyzed. | In the system, the cost of
this component is
analyzed regularly
(annual), and GIS
integration is being
planned for regional
analysis. | In DMAs, costs are calculated regularly and integrated with GIS, and regional variations are analyzed. | **Table 3** | The scoring structure for advanced-level components | Advanced-level components | Quite poor
0 | Poor
1 | Insufficient
2 | Moderate
3 | Good
4 | Quite good
5 | |---|--|---|--|--|---|---| | Total service
connection length
(on private
property) | Service
connection
length
unknown | No accurate data for
service connection
length, a part of the
network plan on paper,
a part on CAD/GIS
(0–25%), no field
calibration. | Except for renewed regions, some of the old regions (25–50%) have a GIS database, no planned updates. | Except for renewed regions, a certain part of the old regions (50–75%) has a GIS database, and there are updates within certain planned (1–2 years). | regions (50–75%) has a of 75–90% of the old regions, and updates are are updates within certain planned (1–2 certain plan. | | | Establishment of a
WLM strategic
plan | No WLM
strategic plan
study | There is no WLM
strategic plan and
enough data,
improvement is being
planned, and the
process is managed by
using a short-term plan. | WLM strategic plan, current situation personnel/technical are assessment works are made and a model is established. budget and target/ personnel/technical are capacity are analyzed, and WLM plan is made for the short term (5 years). | | The current situation and budget/target/personnel are analyzed, there is a 5–10-year WLM plan, and there is coordination between units. | The current situation,
budget, targets/personnel
and capacity are analyzed,
there is a long-term WLM
plan, and there is
coordination between the
units. | | Number of
unreported
(network/service
connection) leaks
(failure) | No data on the
number of
unreported
failures | No regular leak
inspection and
detection policy, work
is done in case of
complaints, no record. | There is no planned/
systematic leak
detection policy, a
random audit is done
annually, and the total
data are kept in excel. | There is leakage control within a certain program throughout the system, there is a separation of main and connection, and data are kept. | There is a DMA-based leak
detection plan, the
detected leaks and their
details are kept in CRM,
and analysis and
inquiries are made. | There is a DMA-based leak
detection plan, the leaks
are kept in CRM, and
temporal and spatial
analysis is performed with
GIS integration. | | Leak controlling on
private property
service
connections | No work for
inspection of
this leak
component | No regular leak
inspection and
detection policy, work
is done in case of
complaints, no record. | There is no planned/
systematic leak
detection policy, a
random policy is
implemented, and data
are kept. | There is leakage control within a certain program throughout the system, and records are kept. | There is a DMA-based leak
detection plan, the leaks
are kept in CRM, and
graphical/temporal
analysis is made. | There is a DMA-based leak detection plan, the leaks are kept in CRM, and temporal/spatial inquiry is made with GIS. | | Integration of
databases with
one another
(GIS-SCADA-
CIS-CRM) | There are no works for this component. | Capacity is not sufficient for improvement/ integration, and there is an awareness for improvement. | information systems | There are some systems (CIS/GIS/SCADA/CRM) and integration with one another is being planned. | There are information
systems (CIS/GIS/
SCADA/CRM), some
systems have integration,
and integration of all
systems is being planned. | There are information
systems (CIS/GIS/
SCADA/CRM), all systems
are integrated, and data
sharing is available. | | Hydraulic model | There is no work for this component. | There are not enough basic data to create a hydraulic model, and data are being collected. | For a part of the system (less than 50%) or some DMAs, there is a hydraulic model but no calibration. | There is a calibrated
hydraulic model in a part
of the system (50–75%)
or some DMAs, and GIS
integration is available. | There is a calibrated
hydraulic model (75–
90%) in DMAs, and GIS
integration is available. | There is a calibrated hydraulic model (more than 90%) in DMAs, and GIS integration is available. | | Real-time
monitoring of the
system | No work for
real-time
monitoring
system | There is no data/
technical capacity for
monitoring, and work
is being done for
improvement. | Flow pressure is
monitored in a pilot
area with sufficient
data, and improvement
is being planned. | In some DMAs with high leakage, real-time monitoring is implemented, and leakage pressure is monitored. | There is a real-time monitoring system in some DMAs, and leakage flow pressure is monitored. | There is a DMA-based real-
time monitoring system,
and leakage flow pressure
is monitored instantly. | | Hydraulic model-
based leak
detection –
monitoring | There is no
work on the
hydraulic
model in the
system. | There is no area
monitored with the
hydraulic model, and
planning is being made
for monitoring in the
pilot area. | Monitoring is made in a DMA with the calibrated model, and improvement is being planned for other regions. | Monitoring is done in some regions (more than 50%) with the calibrated hydraulic model, and GIS integration is available. | Monitoring is done in some regions (more than 75%) with the calibrated model, and GIS integration is available. | Monitoring is done in some regions (more than 90%) with the calibrated hydraulic model, and GIS integration is available. | |---|--|---|--
--|---|--| | Leak monitoring
with a pressure
sensor, noise
logger, and
correlator | There is no work for this component. | No zone monitored by a pressure sensor, improving network and field data in pilot DMA. | Work is being done to
meet the technical
requirements, and
planning is being done
in the pilot region. | There is one monitoring system, and leak monitoring is made in the pilot region with a pressure sensor/recorder/correlator. | Leaks are monitored in
some DMAs with
pressure sensors/
recorders/correlators,
and the sensors do not
stay permanently. | Equipment/knowledge is sufficient, and leaks are monitored continuously with a pressure sensor, noise recorder, and correlator with a specific plan. | | Analysis and
monitoring of ILI
and UARL
indicators | There is no work for this component. | Data are unreliable and insufficient to calculate these components, and work is being done for improvement. | Regular data are
available only in
renewed regions for
analysis, and
improvement is being
made for other
regions. | Regular data are available
only in renewed regions
and pilot DMAs, and
UARL and ILI can be
calculated and
monitored. | UARL and ILI in systems
and DMAs are regularly
analyzed, monitored in
Excel, and targets are set. | UARL and ILI in systems
and DMAs are regularly
analyzed, and regional
changes are monitored by
GIS. | | Determination of
the most
appropriate loss
rate level for real
losses | There is no work for this component. | Data for analysis are
available but not up-to-
date, data are
unreliable/insufficient,
and work is made to
improve data quality. | Only one DMA has
regular data, some
indicators are
calculated, and work is
being planned to
calculate the most
appropriate rate. | Indicators are calculated/
monitored with regular
data in DMAs, and the
most appropriate rate is
calculated in Excel. | The most appropriate rate analysis in the system/DMAs is made with the developed model, and it is updated annually. | The most appropriate rate in
the system/DMAs is
analyzed by the developed
model and updated
annually. GIS-based
analysis is made. | | Failure rate change
monitoring and
useful life analysis | There is no work for this component. | Failure records are kept
in paper form, there is
no detailed analysis
and evaluation, and
planning is made for
improvement. | Analysis and inquiries
for total records are
not detailed, and they
are made graphically
according to some
pipe properties. | Failure rates are analyzed in mains/connections with physical factors, there is GIS integration, and economic life analysis is being planned. | Spatial/temporal analysis is made in mains/connections with physical-environmental data by GIS, and economic life is analyzed in a DMA. | Spatial/temporal analyses
are made in mains/
connections due to
physical and
environmental factors,
there is GIS integration,
and economic life analysis
is made. | | Estimation of
leakage
components with
failure and
leakage records | There is no work for this component. | There are no data or information on the number and details of failures and leaks, and the technical background is not sufficient. | Reported failures exist,
unreported leaks are
missing, data are
inconsistent, and leaks
are estimated. | Reported failures are available, the unreported leaks in pilot DMAs are saved, leakage time and rate is estimated with the fault type, and leaks are analyzed. | Reported faults are
available, unreported
leaks in DMAs are saved,
details of fault type,
duration, unit leakage
rate are kept, and leaks
are analyzed. | Reported and unreported faults are available in DMAs, details of fault type, duration, and unit leakage rate are kept, and GIS integration is available. | Table 3 | Continued | Advanced-level components | Quite poor
0 | Poor
1 | Insufficient 2 | Moderate
3 | Good
4 | Quite good
5 | |---|--------------------------------------|---|---|--|--|---| | Estimation of
leakage and
establishment of
water balance
based on MNF | There is no work for this component. | No ALC and DMA plan,
data-technical capacity
is insufficient, and
improvement is being
planned. | Leaks in mains/
connections are
determined by MNF
analysis in pilot DMAs
separately, and leakage
volume is calculated. | | The leaks in mains/
connections are
determined by MNF
analysis in the system
(75–90%), and leaks are
analyzed. | The leaks in mains/
connections are
determined by MNF
analysis in the system
(more than 90%), and GIS
integration is available. | | GIS-based
integrated WLM
model | There is no work for this component. | There are some databases, but their upto-date status is doubtful, and the capacity is not sufficient for improvement and integration. | Basic databases are
working correctly and
up-to-date, and the
capacity is being
improved for
integration of IMSs. | There are information
systems, work is being
planned for integration,
and flow pressure and
WBA are managed in the
GIS-based WLM model. | Some systems are integrated, planning is made for integration of all systems, some analyses are made with GIS, and planning is made for all. | There are integrated information systems, all systems are integrated (GIS integration is available), and flow pressure and MNF indicators are made by this model. | | Definition of the ELL | There is no work for this component. | There are not enough information and data, there is awareness, and planning is being made for ELL. | The C&B components in WDS are analyzed by the Excel template, and the ELL structure is being planned. | The C&B and ELL analysis
in WDS or DMA is made
by using an Excel
template, and the ELL
analysis system is
planned. | | | | Network renewal
C&B analysis and
monitoring | There is no work for this component. | Initial investment costs of
renewal are known,
there are not enough
data and experience to
analyze. | There is no C&B standard, the renewal costs are known, the benefits are estimated, and improvement is planned. | C&B standard is planned, renewal costs are known, and benefits are calculated in pilot DMAs with failure/leaks data. | C&B analysis is made, and
renewal and operating
costs and gains are
calculated and monitored
in detail. | C&B analysis is done,
renewal and operating
costs/gains are calculated
and monitored, and GIS
integration is available. | | Analysis and
monitoring of
ALC cost | There is no work for this component. | There are not enough data/information for analysis, and improvement is being planned. | Cost is analyzed in the pilot region, and planning is done for the overall system. | In the system, the costs are analyzed (1–2 years), and regional variations are not analyzed. | The costs are analyzed regularly (annual), and planning is made for integration with GIS. | In DMAs, costs are calculated regularly and integrated with GIS, and regional variations are analyzed. | | Analysis and
monitoring of
C&B of DMA | There is no work for this component. | There are not enough data/information for analysis, and improvement is being planned. | Cost is analyzed in the pilot region, and planning is done for the overall system. | In the system, the costs are analyzed (1–2 years), and regional variations are not analyzed. | The costs are analyzed regularly (annual), and planning is made for integration with GIS. | In DMAs, costs are
calculated regularly and
integrated with GIS, and
regional variations are
analyzed. | | Analysis and
monitoring of PM
C&B | There is no work for this component. | There are not enough data/information for analysis, and improvement is being planned. | Cost is analyzed in the pilot region, and planning is done for the overall system. | In the system, the costs are analyzed (1–2 years), and regional variations are not analyzed. | The costs are analyzed regularly (annual), and planning is made for integration with GIS. | In DMAs, costs are calculated regularly and integrated with GIS, and regional variations are analyzed. | Figure 1 | Pilot administrations selected in the study. is 4, the primary target for these components is defined as quite a good-level target (Target III). If the current score of the variable is 5 (quite good level), it would be appropriate to keep the current situation as such. Thus,
appropriate and realistic targets were determined in the administration according to the current conditions. Network length and the number of service connections are the most basic data used in leakage management. Therefore, these data should be collected systematically. These components should be at least four points (good level) for ensuring an accurate and reliable leakage analysis. In pilot administrations, these components are generally at good or quite good level (ID2 is at the average level in Administration 2). The quality of the most basic data is at good level. Valves play quite an important role in shutting off the water in case of failure in the WDS, creating the network operation plan and applying DMAs on site. While the valve component is at a good level in Administrations 1 and 3, it is moderate in Administration 2, where this component should be improved and updated systematically. SCADA and other information systems are important in monitoring hydraulic data in WDSs. In particular, hydraulic parameters should be monitored regularly for monitoring the water produced and supplied to the system, establishing the water budget, the analysis of MNF, the flow-pressure analysis, and WLM indicators. Information systems planning is at a good level in Administrations 1 and 2 and at an insufficient level in Administration 3. The water production SCADA component is at quite good level in all three administrations, and all resources are monitored regularly. The component of monitoring hydraulic data with SCADA in DMAs is at quite good level in Administration 2 and at moderate level in Administrations 1 and 3. The GIS database (ID7) should be up-to-date in order to effectively manage all assets and to implement leak prevention and control strategies efficiently. Moreover, the regular Customer Relationship Management (CRM) component (ID8) in the administration should be at good level in order to systematically and quickly manage and repair the reported faults and to manage calls more systematically. These components are at quite good level in all three administrations in terms of effective management of faults and calls and the efficient implementation of leak prevention and control methods. Table 4 | The scoring results and targets for basic-level components in pilot administrations | | _ | Adm | inistr | ation | Ι | Adm | inistr | ation | II | Admi | nistra | ation | III | |------|---|-------|--------|-------|-----|-------|--------|-------|-----|-----------|--------|-------|-----| | ID | Components | Score | | Гarge | | Score | | Targe | | Score | | Farge | | | | | | I | II | III | | Ι | II | III | 353636361 | I | II | Ш | | ID1 | Main Length | 5 | | | | 4 | | | | 4 | | | | | ID2 | Number of Service Connection | 5 | | | | 4 | | | | 3 | | | | | ID3 | Number of Valves | 5 | | | | 3 | | | | 4 | | | | | ID4 | Planning of Information
Management System (IMS) | 4 | | | | 4 | | | | 2 | | | | | ID5 | Water Resources, System Input Flow
Management System (SCADA) | 5 | | | | 5 | | | | 5 | | | | | ID6 | WLM Database (SCADA
Distribution) | 3 | | | | 5 | | | | 3 | | | | | ID7 | Distribution System GIS Database | 5 | | | | 4 | | | | 4 | | | | | ID8 | Customer Relationship Management (CRM) | 4 | | | | 5 | | | | 4 | | | | | ID9 | Analysis of Factors Affecting Real
Losses | 5 | | | | 4 | | | | 2 | | | | | ID10 | Strategy Development for Detection of Leakages | 4 | | | | 5 | | | | 4 | | | | | ID11 | Active Leak Control (ALC)
Program, Plan and Strategy | 5 | | | | 4 | | | | 3 | | | | | ID12 | DMA Planning | 5 | | | | 3 | | | | 4 | | | | | ID13 | MNF Analysis | 5 | | | | 3 | | | | 4 | | | | | ID14 | Failure Repair Speed and Time
Analysis and Improvement | 4 | | | | 5 | | | | 4 | | | | | ID15 | Systematic Measurement and
Monitoring of Real Loss
Components for Water Balance
Calculations | 4 | | | | 5 | | | | 3 | | | | | ID16 | Performance Monitoring System (PMS) and Integration of Systems | 4 | | | | 5 | | | | 3 | | | | | ID17 | Monitoring of GIS Data Update and
Verification Practices | 5 | | | | 5 | | | | 3 | | | | | ID18 | Performance Analysis and
Monitoring for DMAs | 2 | | | | 2 | | | | 2 | | | | | ID19 | Analysis and Monitoring of Network
Failure Maintenance-Repair Cost | 1 | | | | 3 | | | | 2 | | | | | ID20 | Analysis and Monitoring of Network
Operating Efficiency | 1 | | | | 2 | | | | 3 | | | | | | Average Scores | 4.05 | | | | 4.00 | | | | 3.30 | | | | Gray shading indicates the gradual targets defined for components. Leakage volume decreases in WDSs depending on the level of application of the leakage reduction and prevention method. Therefore, such methods should be applied correctly and systematically. The current application levels of components, ID11 (ALC), ID12 (DMA planning), ID13 (MNF analysis), ID14 (fault repair speed and time), and ID15 (water balance analysis), are questioned for systematic measurement and monitoring of leakages. These components are at good and/or quite good level in Administration 1, at good level in Administration 2 (ID12 and ID13 components are at moderate level), and at good level in Administration 3 (ID11 and D15 components are at moderate level). Accordingly, it is understood that an awareness for leak management practices in administrations is formed, and field applications for basic methods are at good level. Leakage management methods are generally time-consuming and costly. Therefore, it is necessary to monitor the benefits from the methods and analyze the performances, the costs, and system operating efficiency. In the developed system, the components of ID16 (performance monitoring system), ID17 (monitoring of GIS update activities), ID18 (performance analysis and monitoring in DMAs), ID19 (fault repair costs), and ID20 (network operating efficiency monitoring) were defined and evaluated. The components ID15, ID16, and ID17 are at good level in Administrations 1 and 2 and at moderate level in Administration 3. However, ID18, ID19, and ID20 components are generally at insufficient level in three administrations. Accordingly, these components should be applied more effectively in order to analyze and improve system operating efficiency in administrations. In basic-level practices, the average scores of the components were calculated as 4.05 in Administration 1, 4.00 in Administration 2, and 3.30 in Administration 3. Accordingly, Administrations 1 and 2 are generally at good level in basic-level practices, while Administration 3 is at moderate level. In Administration 1, the components of ID6, ID18, ID19, and ID20 (performance monitoring and cost analysis) constitute the weakness of the administration and need improvement. In Administration 2, components ID3, ID13, ID18, ID19, and ID20 (performance monitoring and cost analysis) constitute the weakness of the administration and need improvement. In Administration 3, components ID2, ID4, ID6, ID9, ID11, ID15, ID16, ID17, ID18, ID19, and ID20 (data monitoring, performance evaluation, and cost analysis) should be improved. The quality of basic data based on the measurement frequency, monitoring and database was evaluated within the scope of leakage management in the administrations. According to the scoring results, it was determined that the basic data measurement, monitoring, and storage components are at good level in three administrations and that the capacity and experience of the administrations are sufficient in this context. These basic data form the basis for the correct implementation of leakage prevention and reduction practices. Accordingly, it can be interpreted that the data situation required for detailed analysis and evaluation within the scope of leakage management in administrations is at good level. Similarly, the most basic leak management practices are generally at good level depending on good data quality in administrations. It is thought that the institutional and personnel experience are sufficient for the most basic practices in administrations. On the other hand, it was determined that the performance evaluation and monitoring components for the leakage components in the administrations are at moderate and/or insufficient level. These components create weaknesses in leak management and, therefore, they need to be improved as a priority. #### **Evaluation for moderate-level practices** The score results and targets for moderate-level practices in administrations are evaluated separately (Table 5). The operating pressure (ID21) is the most basic operating data considered in leak management. Pressure should be measured regularly in order to monitor the changes in failures/leaks due to the pressure, to decide PM, and to define the most appropriate pressure level. This component is at good level in Administrations 1 and 2 and at insufficient level in Administration 3. A roadmap for WLM (ID22) is quite important for effective planning and implementation of WLM processes according to a specific flow in the field. This component is at good level in Administration 1 and at moderate level in Administrations 2 and 3. Regular monitoring and systematic maintenance of the network are required in order to reduce operating costs. In this context, ID23 and ID26 components question maintenance and repair practices in the administration. Field works for these components in three administrations are at insufficient or poor level. A fault management system integrated with GIS (ID24) makes a significant contribution to more effective management of faults and the determination of factors. Moreover, the SCADA reservoir monitoring system (ID25) is useful for technical personnel in network operation and monitoring demand flow. These components are at good level in general. Leaks in the WDSs and reservoirs should be identified and monitored on the basis of site inspections for ensuring an accurate
leak analysis. In this context, the ID27 and ID28 components question the inspection of leaks in the distribution system and reservoirs. Moreover, the application levels of ID31, ID32, and ID33 components are highly effective in reducing leaks. The application of these components are at average level in the three administrations. The ID35 component (leakage performance monitoring) and the ID36 component (PM monitoring) are at good level in Administration 2 and at moderate level in Administrations 1 and 3. The components of ID38 and ID39 (the performance monitoring of MNF and leak detection practices) are at moderate level in Administrations 1 and 3 and at good level in Administration 2. Accordingly, performance analysis and monitoring practices are generally at good level in Administration 2. Operation and production costs vary depending on the volume of leakage. Moreover, failure repairs cause significant annual costs. Therefore, these cost components should be analyzed with field data in order to analyze the system efficiency. Table 5 | The scoring results and targets for moderate-level components in pilot administrations | | | Adn | ninis | tratio | n I | Adm | inist | ratior | ı II | Adm | inistr | ation | III | |------|--|-------|-------|--------|-----|-------|-------|--------|------|-------|--------|-------|-----| | ID | Components | Score | e. | Гarge | ets | Score | , | Targe | ts | Score | | Гarge | ts | | | 344 | | I | II | Ш | Score | I | II | Ш | Score | I | II | Ш | | ID21 | Operating Pressure | 5 | | | | 4 | | | | 2 | | | | | ID22 | Roadmap for Managing WLM
Components | 4 | | | | 3 | | | | 3 | | | | | ID23 | GIS Based Valve Failure Database,
Maintenance-Repair and Control
Program | 1 | | | | 2 | | | | 1 | | | | | ID24 | Failure Management System (Integrated with GIS) | 2 | | | | 5 | | | | 4 | | | | | ID25 | SCADA Reservoir Monitoring System and Database | 4 | | | | 4 | | | | 4 | | | | | ID26 | Network Maintenance and Repair
Management (MRM) System (with GIS) | 1 | | | | 0 | | | | 3 | | | | | ID27 | Leaks in the Distribution System (Mains and Service Connections) | 4 | | | | 3 | | | | 2 | | | | | ID28 | Leaks in Reservoirs | 2 | | | | 3 | | | | 4 | | | | | ID29 | Leak Detection and Repair Technical
Capacity (Team, Device) | 4 | | | | 4 | | | | 4 | | | | | ID30 | Analysis of Factors Affecting the Failure | 4 | | | | 4 | | | | 3 | | | | | ID31 | Pressure-Flow-Leakage-Failure Analysis | 5 | | | | 5 | | | | 3 | | | | | ID32 | Leak Management and Prevention in Reservoirs | 3 | | | | 2 | | | | 5 | | | | | ID33 | Pressure Management (PM) Strategy | 3 | | | | 4 | | | | 5 | | | | | ID34 | Service Connection Failure/Leak
Prevention Strategy | 3 | | | | 3 | | | | 3 | | | | | ID35 | Monitoring of Real Loss Performance
Indicators | 3 | | | | 4 | | | | 3 | | | | | ID36 | Monitoring PM Practices | 3 | | | | 4 | | | | 3 | | | | | ID37 | Monitoring the Minimum Night Flow
Practice | 4 | | | | 5 | | | | 3 | | | | | ID38 | Monitoring of Leak Detection (Team and Inspection) Practices | 3 | | | | 5 | | | | 3 | | | | | ID39 | Analysis and Monitoring of the Cost of
Real Losses | 4 | | | | 4 | | | | 2 | | | | | ID40 | Analysis and Monitoring of Leak
Detection Equipment-Monitoring Cost | 3 | | | | 3 | | | | 3 | | | | | | Average Scores | 3.25 | | | | 3.55 | | | | 3.15 | | | | Gray shading indicates the gradual targets defined for components. The ID39 and ID40 components are at good and moderate levels in Administrations 1 and 2. The application level of these components in Administration 3 is at insufficient level. In moderate-level practices, the average scores of the components were calculated as 3.25 in Administration 1, 3.55 in Administration 2, and 3.15 in Administration 3. Accordingly, while Administrations 1 and 3 are at moderate level, Administration 2 is at upper-moderate level. In this group, the components of maintenance and repair, cost analysis, and leak control are at moderate level in administrations and need to be improved. The data, experience, equipment, and financial requirements of components in moderate-level applications are higher than in basic-level methods. Therefore, the application levels of the components in this group were obtained at lower level. In particular, it was determined that the scores of the failure maintenance, repair, and monitoring programs applications vary in general. On the other hand, it is seen that the practices to reduce and prevent leaks are at average level. It is thought that these methods have the potential to be applied more effectively and systematically in administrations by considering the Table 6 | The scoring results and targets for advanced-level components in pilot administrations | | Components Total Service Connection Length (on | Administration I | | | | Administration II | | | | Administration III | | | | |------|--|------------------|---------|----|-----|-------------------|------------------|----|-----|---|--------|--------|-----| | ID | | Score | Targets | | | Score | Targets I II III | | | Score | Target | | | | | | | I | II | III | 19109-1019-1010 | 1 | II | III | 250000000000000000000000000000000000000 | I | II | III | | ID41 | private property) | 5 | | | | 4 | | | | 3 | | | | | ID42 | Establishment of WLM Strategic Plan | 3 | | | | 3 | | | | 3 | | | | | ID43 | Number of Unreported (Network/Service
Connection) Leaks (Failure) | 4 | | | | 5 | | | | 4 | | | | | ID44 | Leak Controlling on Private Property
Service Connections | 1 | | | | 5 | | | | 1 | | | | | ID45 | Integration of Databases with Each Other (GIS, SCADA, CIS, CRM) | 4 | | | | 4 | | | | 3 | | | | | ID46 | Hydraulic Model | 4 | | | | 2 | | | | 2 | | in the | | | ID47 | Real-Time Monitoring of the System | 5 | | | | 0 | | | | 4 | | | | | ID48 | Hydraulic Model Based Leak Detection -
Monitoring | 2 | | | | 1 | | | | 2 | | | | | ID49 | Leak Monitoring with Pressure Sensor,
Noise Logger and Correlator | 2 | | | | 2 | | | | 5 | | | | | ID50 | Analysis and Monitoring of ILI and UARL Indicators | 3 | | | | 4 | | | | 2 | | | | | ID51 | Determination of the Most Appropriate
Loss Rate Level for Real Losses | 3 | | | | 4 | | | | 4 | | | | | ID52 | Failure Rate Change Monitoring and Useful Life Analysis | 2 | | | | 4 | | | | 3 | | | | | ID53 | Estimation of Leakage Components with Failure and Leakage Records | 4 | | | | 4 | | | | 3 | | | | | ID54 | Estimation of Leakage and Establishment of Water Balance Based on MNF | 4 | | | | 3 | | | | 3 | | | | | ID55 | GIS-based Integrated WLM Model | 3 | | | | 4 | | | | 1 | | | | | ID56 | Definition of Economic Leakage Level (ELL) | 0 | | | | 3 | | | | 1 | | | | | ID57 | Network Renewal C&B Analysis and
Monitoring | 1 | | | | 4 | | | | 3 | | | | | ID58 | Analysis and Monitoring of ALC Cost | 2 | | | | 4 | | | | 3 | | | | | ID59 | Analysis and Monitoring of C&B of DMA | 1 | | | | 4 | | | | 3 | | | | | ID60 | Analysis and Monitoring of PM C&B | 1 | | | | 3 | | | | 3 | | | | | | Average Scores | 2.70 | | | | 3.35 | | | | 2.80 | | | | Gray shading indicates the gradual targets defined for components. requirements of these practices. Moreover, it was determined that the components of monitoring the performance of the most basic leak management practices are generally close to the average and/or good levels. Since the application level of the most basic methods is at good level in administrations, it is understood that the capacity and experience related to the performance monitoring is formed. The gradual target was defined by considering the current scores of the components (Table 5). ## **Evaluation for advanced-level practices** The score results and targets for advanced-level practices in administrations are evaluated separately (Table 6). The ID41 (total service connection length on private property) component is particularly important for identifying and monitoring illegal uses or leaks on private property. This component is at good level in Administrations 1 and 2 and at moderate level in Administration 3. Leak inspection (ID44) in service connections on private property is at poor level in Administrations 1 and 3 and at quite good level in Administration 2. The reported failures data (ID43) are required for water balance with component analysis and operating cost and leakage density analysis. A systematic analysis and monitoring of leak components requires the integration of data monitoring and management systems (ID45). Therefore, these components were considered and tested. These components are at good level in all administrations. Leak detection equipment such as ground microphones, regional recorders, and correlators are applied to detect unreported leaks. The components of the hydraulic model (ID46), real-time system monitoring (ID47), hydraulic model-based leak detection (ID48), and leak detection with a local correlator/logger (ID49) are evaluated. The ID46 component is at good level in Administration 1 and at insufficient level in other administrations. Leakage volume could be calculated with the bottom-up (MNF analysis) method (ID53) and component analysis (ID54) on the basis of field data, as well as top-down water balance. In administrations, the ID53 and ID54 components are generally at good level. Finally, the costs of field practices in WLM should be determined in order to check efficiency. Therefore, the cost components of ID57, ID58, ID59, and ID60 were evaluated in the three administrations. These components are generally at insufficient level in Administration 1, at good level in Administration 2, and at moderate level in Administration 3. The average scores of the components in advanced-level practices were calculated as 2.70 in Administration 1, 3.35 in Administration 2, and 2.80 in Administration 3.
Accordingly, Administrations 1 and 3 are generally at below moderate or insufficient level, and Administration 2 is above moderate or close to good level. Field implementation and monitoring of components in advanced applications requires more data, equipment, and experience. Therefore, the scores of the components in this group are generally lower than the basic- and moderate-level practices. In this group, it was determined that especially the regional monitoring and detection of leaks had low scores. The equipment and economic capacity of the administrations need to be improved for the implementation of these components. On the other hand, since the most basic leak detection and prevention methods are applied at good level in administrations, leak estimation methods are also applied effectively according to the data obtained from these applications. However, more work should be done to make more effective cost–benefit analyses of the methods applied, especially for leakage prevention methods. As a result, the general achievements obtained in this study can be given as follows: (i) the current application levels of leak management components in administrations are scored according to the dynamic structure of the administration, (ii) the weaknesses and strengths are defined in the scope of leakage management, and the components that need improvement are determined dynamically, (iii) realistic and appropriate targets are defined gradually (such as moderate, good, and quite good targets) on the basis of current scores on a component basis, and (iv) this model creates a roadmap in leak management, especially for decision makers and technical personnel, and serves as a reference in terms of ensuring efficiency. ## **CONCLUSIONS** In this study, a new framework has been developed to analyze and evaluate the current application levels of leakage management components in WDSs. The developed framework was tested in pilot administrations according to real field data. In basic-level practices, the average scores were calculated for Administration 1 (4.05), Administration 2 (4.00), and Administration 3 (3.30). Accordingly, Administrations 1 and 2 are generally at good level, while Administration 3 is at moderate level. It was determined that the basic data measurement, monitoring, and storage components are at good level in three administrations and that the capacity and experience of the administrations are sufficient in this context. It can be interpreted that the data situation required for detailed analysis and evaluation within the scope of leakage management in administrations is at good level. Similarly, basic leak management practices are generally at good level depending on good data quality in administrations. It is thought that the institutional and personnel experience is sufficient for the most basic practices in administrations. On the other hand, it was determined that the performance evaluation and monitoring components for the leakage components in the administrations are at moderate and/or insufficient level. The average scores of the components in moderate practices were calculated as (3.25) for Administration 1, (3.55) for Administration 2, and (3.15) for Administration 3. Accordingly, Administrations 1 and 3 are generally at moderate level, while Administration 2 is close to good level. The data, experience, equipment, and financial requirements of components in moderate-level applications are higher than in basic-level methods. Therefore, the application levels of the components in this group were obtained at lower level. In particular, the leakage reduction and prevention practices are at average level. It is thought that these methods have the potential to be applied more effectively and systematically in administrations by considering the requirements of these practices. Moreover, since the application level of the most basic methods was at good level in the administrations, it was understood that the capacity and experience related to the performance monitoring is formed. The average scores of the components in advanced practices were calculated as (2.70) for Administration 1, (3.35) for Administration 2, and (2.80) for Administration 3. Accordingly, Administrations 1 and 3 are generally at insufficient level and Administration 2 is close to good level. Field implementation and monitoring of components in advanced applications requires more data, equipment, and experience. Therefore, the scores of the components in this group are generally lower than the basic- and moderate-level practices. In this group, especially the regional monitoring and the detection of leaks had low scores. On the other hand, since the most basic leak detection and prevention methods are applied at good level in the administrations, leak estimation methods are also applied effectively according to the data obtained from these applications. However, more work should be done to make more effective cost–benefit analyses of the methods applied, especially for leakage prevention methods. As a result, based on the scoring and evaluations, the proposed framework reveals the current situation according to the dynamic structure of the administration. Achievable targets and road maps are defined for each component by considering the available scores depending on this dynamic structure. It is thought that the framework developed will be a reference for the decision-making and technical personnel in the administrations, especially for defining the current situation in WLM and creating a roadmap. #### **ACKNOWLEDGEMENTS** This study was produced from the PhD thesis conducted by C.B.. The authors thank Inonu University, Scientific Research Project Funding for their financial support (FDK-2020/2262). This research was supported by TUBITAK (the Turkish National Science Foundation) under Project Number 220M091. ## **DATA AVAILABILITY STATEMENT** All relevant data are included in the paper or its Supplementary Information. ## **REFERENCES** - Agathokleous, A. & Christodoulou, S. 2017 Component-holistic condition assessment of water distribution networks. *Journal of Water Supply: Research and Technology AQUA* **64** (7), 509–519. - Al-Washali, T., Sharma, S., Lupoja, R., Al-Nozaily, F., Haider, M. & Kennedy, M. 2020 Assessment of water losses in distribution networks: methods, applications, uncertainties, and implications in intermittent supply. *Resources, Conservation and Recycling* **152**, 104515. - Amoatey, P. K., Minke, R. & Steinmetz, H. 2018 Leakage estimation in developing country water networks based on water balance, minimum night flow and component analysis methods. *Water Practice and Technology* **13** (1), 96–105. - Arai, Y., Koizumi, A., Inakazu, T., Watanabe, H. & Fujiwara, M. 2010 Study on failure rate analysis for water distribution pipelines. *Journal of Water Supply: Research and Technology AQUA* **59** (6–7), 429–435. - Bakhtiari, P. H., Nikoo, M. R., Izady, A. & Talebbeydokhti, N. 2020 A coupled agent-based risk-based optimization model for integrated urban water management. Sustainable Cities and Society 53, 101922. - Berardi, L. & Giustolisi, O. 2021 Calibration of design models for leakage management of water distribution networks. *Water Resources Management* **35**, 2537–2551. - Berardi, L., Laucelli, D., Ugarelli, R. & Giustolisi, O. 2015 Leakage management: planning remote real time controlled pressure reduction in Oppegård municipality. *Procedia Engineering* **119** (1), 72–81. - Bozkurt, C., Fırat, M., Ateş, A., Yılmaz, S. & Özdemir, Ö. 2022 Strategic water loss management: current status and new model for future perspectives. Sigma Journal of Engineering and Natural Sciences 40 (2), 1–14. - Boztaş, F., Ödemir, Ö., Durmuşçelebi, F. M. & Firat, M. 2019 Analyzing the effect of the unreported leakages in service connections of water distribution networks on non-revenue water. *International Journal of Environmental Science and Technology* **16**, 4393–4406. - Cabral, M., Loureiro, D., Almeida, M. & Covas, D. 2019 Estimation of costs for monitoring urban water and wastewater networks. *Journal of Water Supply: Research and Technology AQUA* 68 (2), 87–97. - Campbell, E., Izquierdo, J., Montalvo, I. & Pérez-García, R. 2016 A novel water supply network sectorization methodology based on a complete economic analysis, including uncertainties. *Water (Switzerland)* 8 (5), 179. - Candelieri, A., Soldi, D. & ve Archetti, F. 2015 Cost-effective sensors placement and leak localization the Neptun pilot of the ICeWater project. *Journal of Water Supply: Research and Technology AQUA* **64** (5), 567–582. - Creaco, E. & Walski, T. 2017 Economic analysis of pressure control for leakage and pipe burst reduction. *Journal of Water Resources Planning and Management* **143** (12), 1–11. - Deidda, D., Sechi, G. M. & Zucca, R. 2014 Finding economic optimality in leakage reduction: a cost-simulation approach for complex urban supply systems. *Procedia Engineering* **70**, 477–486. - Duan, H.-F., Pan, B., Wang, M., Chen, L., Zheng, F. & Zhang, Y. 2020 State-of-the-art review on the transient flow modeling and utilization for urban water supply system (UWSS) management. *Journal of Water Supply: Research and Technology AQUA* **69** (8), 858–893. - European Commission 2014 LEAKCURE Project, Focus on Reducing Urban Water Leakage. Available from: http://cordis.europa.eu/news/rcn/36134 en.html (accessed 3 May 2021). - Farley, M. & Liemberger, R. 2005 Developing a non-revenue water reduction strategy: planning and implementing the strategy. *Water Supply* **5** (1), 41–50. - Ferrari, G. & Savic, D. 2015 Economic performance of DMAs in water distribution systems. Procedia Engineering 119 (1), 189-195. - Fırat, M., Yılmaz, S., Ateş, A. & Özdemir, Ö. 2021 Determination of economic leakage level with optimization algorithm in water distribution systems. *Water Economics and Policy* **7** (3), 1–38. - García-Ávila, F., Avilés-Añazco, A.,
Ordoñez-Jara, J., Guanuchi-Quezada, C., Flores del Pino, L. & Ramos-Fernández, L. 2019 Pressure management for leakage reduction using pressure reducing valves. Case study in an Andean city. *Alexandria Engineering Journal* 58 (4), 1313–1326. - Giaquinto, N., D'Aucelli, G. M., D'Ingillo, R., Prudenzano, F. & Attivissimo, F. 2018 Development of a sensor for leak detection in underground water pipelines. In: 2018 IEEE International Workshop on Metrology for the Sea; Learning to Measure Sea Health Parameters (MetroSea), pp. 268–272. - Guo, G., Liu, S., Jia, D., Wang, S. & Wu, X. 2021 Simulation of a leak's growth process in water distribution systems based on growth functions. *Journal of Water Supply: Research and Technology AQUA* **70** (4), 521–536. - Gupta, A. & Kulat, K. D. 2018 A selective literature review on leak management techniques for water distribution system. *Water Resources Management* **32**, 3247–3269. - IPCC 2015 Future Work of the IPCC: Consideration of the Recommendations by the Task Group on Future Work of the IPCC. - Kahn, C., Damiani, A. & Ge, S. 2020 Validation of water main failure predictions: a 2-year case study. *AWWA Water Science* **2** (3), e1179. Kanakoudis, V. & Gonelas, K. 2016 Non-revenue water reduction through pressure management in Kozani's water distribution network: from theory to practice. *Desalination and Water Treatment* **57** (25), 11436–11446. - Lambert, A. Q., Brown, T. G., Takizawa, M. & Weimer, D. 1999 A Review of Performance Indicators for Real Losses from Water Supply Systems. *Journal of Water Supply: Research and Technology AQUA* 48 (6), 227–237. - Liemberger, R. & Farley, M. 2004 Developing a nonrevenue water reduction strategy Part 1: Investigating and assessing water losses. In: Proceedings of the IWA Specialized Conference: The 4th IWA World Water Congress Marrakech, Marrakech, Morocco, 19–24 September 2004. IWA, London, UK. - Liemberger, R. & Wyatt, A. 2019 Quantifying the global non-revenue water problem. Water Supply 19 (3), 831-837. - Lipiwattanakarn, S., Kaewsang, S., Pornprommin, A. & Wongwiset, T. 2019 Real benefits of leak repair and increasing the number of inlets to energy. *Water Science & Technology* 14 (3), 714–725. - Marchionni, V., Cabral, M., Amado, C. & Covas, D. 2016 Estimating water supply infrastructure cost using regression techniques. *Journal of Water Resources Planning and Management* **142** (4), 04016003. - Marzola, I., Alvisi, S. & Franchini, M. 2021 Analysis of MNF and FAVAD model for leakage characterization by exploiting smart-metered data: the case of the Gorino Ferrarese (FE-Italy) district. *Water* 13, 643. - Monsef, H., Naghashzadegan, M., Farmani, R. & Jamali, A. 2018 Pressure management in water distribution systems in order to reduce energy consumption and background leakage. *Journal of Water Supply: Research and Technology AQUA* 67 (4), 397–403. - Moslehi, I., Jalili-Ghazizadeh, M. & Yousefi-Khoshqalb, E. 2021 Developing a framework for leakage target setting in water distribution networks from an economic perspective. *Structure and Infrastructure Engineering* 17 (6), 821–837. - Muhammetoglu, A., Nursen, C., Karadirek, I. E. & Muhammetoglu, H. 2018 Evaluation of performance and environmental benefits of a full-scale pump as turbine system in Antalya water distribution network. *Water Science & Technology: Water Supply* 18 (1), 130–142. - Mutikanga, H. E., Sharma, S. K. & Vairavamoorthy, K. 2013 Methods and tools for managing losses in water distribution systems. *Journal of Water Resources Planning and Management* 139 (2), 166–174. - Negharchi, S. M. & Shafaghat, R. 2020 Leakage estimation in water networks based on the BABE and MNF analyses: a case study in Gavankola village, Iran. *Water Supply* **20** (6), 2296–2310. - Özdemir, Ö., Fırat, M., Yılmaz, S. & Usluer, M. 2021 Analysis of the effect of pressure control on leakages in distribution systems by FAVAD equation and field applications. *Water Practice and Technology* **16** (2), 320–332. - Pearson, D. 2019 Standard Definitions for Water Losses: A Compendium of Terms and Acronyms and their Associated Definition in Common Use in the Field of Water Loss Management. IWA Publishing, London, UK, p. 80. - Puust, R., Kapelan, D., Savic, D. A. & Koppel, T. 2010 A review of methods for leakage management in pipe networks. *Urban Water Journal* 7 (1) 25-45 - Serafeim, A. V., Kokosalakis, G., Deidda, R., Karathanasi, I. & Langousis, A. 2022 Probabilistic minimum night flow estimation in water distribution networks and comparison with the water balance approach: large-scale application to the City Center of Patras in Western Greece. *Water* 14, 98. - Shukla, H. & Piratla, K. 2020 Leakage detection in water pipelines using supervised classification of acceleration signals. *Automation in Construction* 117, 103256. - SUEN 2017 Turkey Water Institute 2017 Water Loss Rates Report. - SUEN 2020 Turkey Water Institute 2020 Water Loss Rates Report. - Vicente, D. J., Garrote, L., Sanchez, R. & Santillan, D. 2016 Pressure management in water distribution systems: current status, proposals, and future trends. *Journal of Water Resources Planning and Management* **146** (2). doi:10.1061/(ASCE)WR.1943-5452.0000589. - Wu, Z. Y., Chew, A., Meng, X., Cai, J., Pok, J., Kalfarisi, R., Lai, K. C., Hew, S. F. & Wong, J. J. 2022 Data-driven and model-based framework for smart water grid anomaly detection and localization. *Journal of Water Supply: Research and Technology AQUA* 71 (1), 31–41. - Yılmaz, S., Fırat, M., Ateş, A. & Özdemir, Ö. 2021a Defining the optimum pressure for active leakage control efficiency by considering by considering economic criteria. *Fresenius Environmental Bulletin* **30** (07A), 9142–9153. - Yılmaz, S., Fırat, M., Ateş, A. & Özdemir, Ö. 2021b Analysis of economic leakage level and infrastructure leakage index indicator by applying active leakage control. *Journal of Pipeline Systems Engineering and Practice* 12 (4), 04021046. doi:10.1061/(ASCE)PS.1949-1204.0000583. First received 7 March 2022; accepted in revised form 16 April 2022. Available online 27 April 2022