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ABSTRACT

To keep chlorine concentration at acceptable levels, chlorine is usually injected into the water distribution system (WDS). To protect the

health of human beings, the chlorine concentration at consumers’ nodes should be kept at appropriate levels. However, these levels are

difficult to determine due to the presence of fuzzy uncertainties. To deal with fuzziness at both sides of the constraints in the optimization

model of booster chlorination, we propose a fuzzy credibility-constrained quadratic programming (FCCQP) model with a consideration of

credibility levels and weight coefficients. The proposed model is applied to two WDSs to obtain the booster cost under uncertain conditions.

The results indicate that the booster cost increases with the confidence level for lower chlorine concentration ζL. In addition, the booster cost

decreases with the weight coefficient w. The booster cost function curves along with the variation of weight coefficients are concave and

convex for scenario 1 and scenario 2, respectively. These results can help managers to make informed decisions on disinfection injection

under conditions of fuzzy uncertainties.
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HIGHLIGHTS

• The study deals with fuzziness at both sides of the constraints.

• The study integrates the generalized fuzzy credibility chance-constrained programming and quadratic programming.

• The study obtains booster cost under various credibility levels and weight coefficients.

• The study analyzes the proportion of the operation cost.

• The study compares the booster costs of various cases.
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GRAPHICAL ABSTRACT
1. INTRODUCTION

Generally, chlorine is injected into the water distribution system (WDS) at treatment plants as disinfectants. However, chlor-
ine decay along the WDS due to its reaction with organic matter in bulk water and pipe wall, which leads to residual chlorine
concentration at nodes far from water sources. On the other hand, the chlorine concentration at nodes near water sources is
://iwa.silverchair.com/aqua/article-pdf/71/5/608/1101489/jws0710608.pdf
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usually higher, which leads to the formation of disinfectant byproducts (Boccelli et al. 2003; Basupi & Nono 2019). As such,

the chlorine residual concentration in the WDS should be within acceptable limits (Köker & Altan-Sakarya 2015). Wang
et al. (2019) investigated the risks brought about by chlorination, and concluded that chlorine levels should be reduced to
decrease the risks of both cancer and non-cancer conditions. Many models were proposed to optimize the numbers, locations

and injection rates of booster. Tryby et al. (2002) proposed a mixed-integer linear programming model to optimize locations
and scheduling of booster chlorination (Al-Zahrani 2016). Prasad et al. (2004) proposed a multi-objective genetic algorithm
(MOGA) model to minimize the total disinfectant dose and maximize the volume of water supplied with acceptable residual
chlorine (Tryby et al. 2002). Munavalli & Kumar (2003) used binary strings to code the chlorine dosages to determine chlor-

ine injection rates at defined booster locations with maximum and minimum constraints of chlorine concentration. Propato
& Uber (2004) proposed a linear least-squares (LLS) model to optimize disinfectant injection rates to minimize the sum of the
squared deviations of residual concentrations from a desired target. Ostfeld & Salomons (2006) proposed a conjunctive opti-

mal schedule to minimize the cost of pumping and chlorine booster design and operation and maximize the injection of the
chlorine dose. However, chlorine concentration in the WDS is related to many factors such as water demand, pipe roughness,
chlorine bulk decay coefficient, and chlorine wall decay coefficient, which leads to cognitive uncertainty and is difficult to

obtain (Xu & Qin 2014). In addition, the maximum and minimum bounds of residual chlorine concentration in the WDS
vary with regulations imposed in different countries and regions, which also have uncertainties.

With a consideration of uncertainties in nodal demands and pipe roughness coefficients, a chance-constrained program-

ming (CCP) model was proposed to minimize the cost of the WDS (Babayan et al. 2005), which can deal with the
randomness on the right-hand side of the constraints (Zhao et al. 2016). A fuzzy framework was also introduced to deal
with the uncertainty in the WDS. Xu and Qin (2014) integrated fuzzy programming and decision analysis to deal with the
fuzzy objective function and both sides of constraints in the management framework of the WDS. Geem (2015) proposed

a fuzzy-based velocity reliability index in the optimization of WDS design. Moosavian and Lence (2018) approximated the
fuzziness of nodal pressures under fuzzy nodal demands and pipe roughness coefficients. Xu & Qin (2014) integrated the
decision analysis and fuzzy programming to help analyze the tradeoffs between the minimization of the operation cost

and maximization of reliability. A fuzzy chance-constrained programming (FCCP) model was proposed to solve the
scheduling of booster disinfection to reflect the ambiguity in the constraints, which can deal with the fuzzy uncertainty on
the right-hand side of the constraints (Wang 2021). Additionally, Wang proposed an inexact left-hand side chance-

constrained programming (ILCCP) model to deal with the interval fuzziness in the objective function and left-hand side of
the constraints (Wang & Zhu 2021a). However, the fuzziness exists not only on the left-hand-side of the constraints but
also on the right-hand-side of the constraints. In addition, booster cost consists of not only the operation cost that is closely
connected with the injection mass but also the construction cost. Against this background, in this paper, a fuzzy credibility–

constrained quadratic optimization (FCCQP) model is proposed to bridge this gap. This model integrates both fuzzy credi-
bility-constrained programming (FCCP) and quadratic programming (QP) into the optimization framework. This model
can compare the results obtained under various credibility levels and weight coefficients.

In Section 2 of this paper, a FCCQP model is introduced to minimize the booster cost of the WDS. The FCCQP model is
transformed into linearization form and applied to two WDSs in Section 3. The results obtained through the FCCQP model
are analyzed and discussed in Section 4. In Section 5, the conclusion is drawn.

2. METHODOLOGY

2.1. Quadratic programming

The QP model can deal with nonlinearities in programming effectively, which is expressed by Equation (1) as follows:

Minf ¼
Xn
j¼1

[cj þ dj(xj)
2], j ¼ 1, 2, . . . , n (1a)

subject toXn
j¼1

aijxj � bi, i ¼ 1, 2, . . . , m (1b)

xj � 0 (1c)
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where aij, bi, cj, and dj are coefficients in objective functions and constraints, and xj is the decision variable. However, QP

cannot deal with the uncertain fuzzy information (Guo et al. 2015).
2.2. Fuzzy credibility-constrained quadratic programming

2.2.1. Fuzzy credibility-constrained programming

The FCCP model can be expressed by Equation (2) as follows:

Minf ¼
Xn
j¼1

cjxj (2a)

subject to

Cr
Xn
j¼1

faijxj � fbU
8<:

9=; � zU , i ¼ 1, 2, . . . , m (2b)

Cr
Xn
j¼1

faijxj � fbL
8<:

9=; � zL, i ¼ 1, 2, . . . , m (2c)

xj � 0, j ¼ 1, 2, . . . , n (2d)

The membership function of variable x to a fuzzy set f expressed by triangular distribution (f1, f2, f3) is termed
m(x), which is expressed by Equation (3) as follows:

m(x) ¼

x� f1

f2 � f1
, f1 � x , f2

x� f3

f2 � f3
, f2 � x , f3

0, others

8>>>>><>>>>>:
(3)

For two fuzzy variables ~g and ~h, the fuzzy events of ~g � ~h and ~g � ~h may have occurred (shown in Figure 1).
Figure 1 | Fuzzy variables ~g and ~h.
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The possibility of fuzzy events ~g � ~h and ~g � ~h is termed Pos(~g � ~h) and Pos(~g � ~h), respectively, which are expressed by

Equation (4) as follows:

Pos(~g � ~h) ¼ sup {min (m~g(x), m~h(y))jx, y [ <, x � y} (4a)

Pos(~g � ~h) ¼ sup {min (m~g(x), m~h(y))jx, y [ <, x � y} (4b)

In addition, the necessity of fuzzy events ~g � ~h and ~g � ~h is termed Nec(~g � ~h) and Nec(~g � ~h), respectively, which are
expressed as follows:

Nec(~g � ~h) ¼ inf {max (m~g(x), 1� m~h(y))jx, y [ <, x � y} (5a)

Nec(~g � ~h) ¼ inf {max (m~g(x), 1� m~h(y))jx, y [ <, x � y} (5b)

By combining with the definition of fuzzy membership function, Pos(~g � ~h) and Pos(~g � ~h) can be obtained and expressed

by Equation (6) as follows:

Pos(~g � ~h) ¼
1, g2 � h2

h3 � g1

h3 � h2 þ g2 � g1
, g2 . h2

0, g1 . h3

8>>><>>>: , g1 � h3 (6a)

Pos(~g � ~h) ¼
1, g2 � h2

g3 � h1

g3 � g2 þ h2 � h1 , g2 , h2

0, g3 , h1

8>>><>>>: , g3 � h1 (6b)

Similarly, by combining with the definition of the fuzzy membership function, Nec(~g � ~h) and Nec(~g � ~h) can be obtained
and expressed by Equation (7) as follows:

Nec(~g � ~h) ¼
1, g3 � h1

h2 � g2

g3 � g2 þ h2 � h1 , g2 , h2

0, g2 � h2

8>>><>>>: , g3 . h1 (7a)

Nec(~g � ~h) ¼
1, g1 � h3

g2 � h2

h3 � h2 þ g2 � g1
, g2 . h2

0, g2 � h2

8>>><>>>: , g1 � h3 (7b)

With a consideration of the weights of possibility and necessity measures, the credibility measure can be expressed by
Equation (8) as follows:

Cr(~g � ~h) ¼ w� Pos(~g � ~h)þ (1�w)� Nec(~g � ~h)) (8a)

Cr(~g � ~h) ¼ w� Pos(~g � ~h)þ (1�w)� Nec(~g � ~h)) (8b)
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The weight coefficient is in the interval [0.1, 1.0]. By combining Equations (6) and (7), Equation (8) can be transformed into

Equation (9), which is expressed as follows:

Cr(~g � ~h) ¼

1, g3 � h1

w(g3 � h1)þ h2 � g2

g3 � g2 þ h2 � h1 , g2 � h2, g3 . h1

w(h3 � g1)
h3 � h2 þ g2 � g1

, g2 . h2, g1 , h3

0, g1 � h3

8>>>>>>><>>>>>>>:
(9a)

Cr(~g � ~h) ¼

1, g1 � h3

w(h3 � g1)þ g2 � h2

h3 � h2 þ g2 � g1
, g2 . h2, g1 � h3

w(g3 � h1)
g3 � g2 þ h2 � h1 , g2 � h2, g3 . h1

0, g3 � h1

8>>>>>>><>>>>>>>:
(9b)

when the weight coefficient w is equal to 1.0, Equations (8a) and (8b) are transformed to Equations (6a) and (6b). When the
weight coefficient w is equal to 0.0, Equations (8a) and (8b) are transformed to Equations (7a) and (7b). When the weight
coefficient w is equal to 0.5, Equations (8a) and (8b) are transformed to Equations (10a) and (10b), which are expressed

as follows:

Cr(~g � ~h) ¼

1, g3 � h1

g3 � 2g2 þ 2h2 � h1

2(g3 � g2 þ h2 � h1)
, g2 � h2, g3 . h1

h3 � g1

2(h3 � h2 þ g2 � g1)
, g2 . h2, g1 , h3

0, g1 � h3

8>>>>>>><>>>>>>>:
(10a)

Cr(~g � ~h) ¼

1, g1 � h3

h3 � 2h2 þ 2g2 � g1

2(h3 � h2 þ g2 � g1)
, g2 . h2, g1 � h3

g3 � h1

2(g3 � g2 þ h2 � h1)
, g2 � h2, g3 . h1

0, g3 � h1

8>>>>>>><>>>>>>>:
(10b)

In Equations (9a) and (9b), by substituting ~g with
Pn

j¼1faijxj, and by substituting ~h with fbU and fbL, respectively, Equations
(9a) and (9b) are transformed into the left-hand side of the constraints in Equations (2b) and (2c), respectively. In addition, zU
and zL on the right-hand side of the constraints Equations (2b) and (2c) should be greater than 0.5. As such, Equations (9a)

and (9b) are limited to the constraints expressed by Equation (11) as follows:

Cr(~g � ~h) ¼
w(g3 � h1)þ h2 � g2

g3 � g2 þ h2 � h1 , g2 � h2, g3 . h1

w(h3 � g1)
h3 � h2 þ g2 � g1

, g2 . h2, g1 , h3

8>>><>>>: (11a)

Cr(~g � ~h) ¼
w(h3 � g1)þ g2 � h2

h3 � h2 þ g2 � g1þ , g2 . h2, g1 � h3

w(g3 � h1)
g3 � g2 þ h2 � h1 , g2 � h2, g3 . h1

8>>><>>>: (11b)
://iwa.silverchair.com/aqua/article-pdf/71/5/608/1101489/jws0710608.pdf
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The constraints expressed as Equations (2b) and (2c) become Equation (12), which is expressed as follows:
w
Pn
j¼1
faijxj

 !3

� (bU)
1

24 35þ (bU)
2 � Pn

j¼1
faijxj

 !2

Pn
j¼1
faijxj

 !3

� Pn
j¼1
faijxj

 !2

þ (bU)
2 � (bU)

1

� zU ,
Pn
j¼1
faijxj

 !2

� (bU)
2,

Pn
j¼1
faijxj

 !3

. (bU)
1

w (bU)
2 � Pn

j¼1faijxj� �1� �
(bU)

3 � (bU)
2 þ Pn

j¼1faijxj� �2
� Pn

j¼1faijxj� �1 � zU,
Pn
j¼1
faijxj

 !2

. (bU)
2,

Pn
j¼1
faijxj

 !1

, (bU)
3

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

(12a)
w ((bL)
3 � Pn

j¼1
faijxj

 !1
24 35þ Pn

j¼1
faijxj

 !2

� (bL)
2

Pn
j¼1
faijxj

 !2

� Pn
j¼1
faijxj

 !1

þ (bL)
3 � (bL)

2

� zL,
Pn
j¼1
faijxj

 !2

. (bL)
2,

Pn
j¼1
faijxj

 !1

� (bL)
3

w
Pn
j¼1
faijxj

 !3

� (bL)
1

24 35
Pn
j¼1
faijxj

 !3

� Pn
j¼1
faijxj

 !2

þ (bL)
2 � (bL)

1

� zL,
Pn
j¼1
faijxj

 !2

� (bL)
2,

Pn
j¼1
faijxj

 !3

. (bL)
1

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

(12b)

The constraints expressed in Equation (12a) can be transformed into Equation (13), which is expressed as follows:
(zU �w)
Xn
j¼1

faijxj
0@ 1A3

þ (1� zU)
Xn
j¼1

faijxj
0@ 1A2

� (1� zU)(bU)
2 þ (zU �w)(bU)

1

Xn
j¼1

faijxj
0@ 1A2

� (bU)
2,

Xn
j¼1

faijxj
0@ 1A3

. (bU)
1

(13a)
(w� zU)
Xn
j¼1

faijxj
0@ 1A1

þzU
Xn
j¼1

faijxj
0@ 1A2

� (w� zU)(bU)
3 þ zU(bU)

2

Xn
j¼1

faijxj
0@ 1A2

. (bU)
2,

Xn
j¼1

faijxj
0@ 1A1

, (bU)
3

(13b)
om http://iwa.silverchair.com/aqua/article-pdf/71/5/608/1101489/jws0710608.pdf

4



AQUA — Water Infrastructure, Ecosystems and Society Vol 71 No 5, 615

Downloaded from http
by guest
on 10 April 2024
Similarly, the constraints expressed in Equation (12b) can be transformed into Equation (14), which is expressed as follows:

(zL �w)
Xn
j¼1

faijxj
0@ 1A1

þ (1� zL)
Xn
j¼1

faijxj
0@ 1A2

� (zL �w)(bL)
3 þ (1� zL)(bL)

2

Xn
j¼1

faijxj
0@ 1A2

. (bL)
2,

Xn
j¼1

faijxj
0@ 1A1

� (bL)
3

(14a)
(w� zL)
Xn
j¼1

faijxj
0@ 1A3

þ zL
Xn
j¼1

faijxj
0@ 1A2

� (w� zL)(bL)
1 þ zL(bL)

2

Xn
j¼1

faijxj
0@ 1A2

� (bL)
2,

Xn
j¼1

faijxj
0@ 1A3

. (bL)
1

(14b)

By combining Equations (13) and (14), four scenarios can be generated, which is the combination of Equations (13a) and
(14a), Equation (13a) and Equation (14b), Equation (13b) and Equation (14a), and Equation (13b) and Equation (14b). How-

ever, the scenario of Equations (13b) and (14b) is impossible to obtain, since the value of
Pn

j¼1faijxj� �2
cannot satisfyPn

j¼1faijxj� �2
. (bU)

2 and
Pn

j¼1faijxj� �2
� (bL)

2 simultaneously. In addition, since the credibility levels for upper chlorine con-
centration limits ζU affect the solutions only when feasible solutions cannot be found, i.e., when feasible solutions can be

obtained, the results are not affected by upper chlorine concentration limits ζU. As such, the solutions obtained through a
combination of Equations (13a) and Equation (14a) and Equation (13b) and Equation (14a) are the same. Accordingly,
only two scenarios are considered, which are the combination of Equations (13a) and (14a), termed scenario 1, and the com-

bination of Equations (13a) and (14b), termed scenario 2, respectively.
When the weight coefficient w is equal to 1.0, Equation (12) can be transformed into Equation (15) and expressed as

follows:

(1� zU)
Xn
j¼1

faijxj
0@ 1A1

þ zU
Xn
j¼1

faijxj
0@ 1A2

� (1� zU)(bU)
3 þ zU(bU)

2 (15a)
(1� zL)
Xn
j¼1

faijxj
0@ 1A3

þ zL
Xn
j¼1

faijxj
0@ 1A2

� (1� zL)(bL)
1 þ zL(bL)

2 (15b)

When the weight coefficient w is equal to 0.0, Equation (12) can be transformed into Equation (16) and expressed as follows:

(1� zU)
Xn
j¼1

faijxj
0@ 1A2

þ zU
Xn
j¼1

faijxj
0@ 1A3

� (1� zU)(bU)
2 þ zU(bU)

1 (16a)
(1� zL)
Xn
j¼1

faijxj
0@ 1A2

þ zL
Xn
j¼1

faijxj
0@ 1A1

� (1� zL)(bL)
2 þ zL(bL)

3 (16b)
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AQUA — Water Infrastructure, Ecosystems and Society Vol 71 No 5, 616

Downloaded fr
by guest
on 10 April 202
When the weight coefficient w is equal to 0.5, Equation (12) can be transformed into Equation (17) and expressed as

follows:

(2zU � 1)
Xn
j¼1

faijxj
0@ 1A3

þ 2(1� zU)
Xn
j¼1

faijxj
0@ 1A2

� 2(1� zU)(bU)
2 þ (2zU � 1)(bU)

1 (17a)

2(1� zL)
Xn
j¼1

faijxj
0@ 1A2

þ (2zL � 1)
Xn
j¼1

faijxj
0@ 1A1

� (2zL � 1)(bL)
3 þ 2(1� zL)(bL)

2 (17b)

The FCCP model can generate more flexible solutions under various credibility levels and weight coefficients w and provide
more information for decision managers.
2.2.2. Fuzzy credibility-constrained quadratic programming

With a combination of QP and fuzzy credibility-constrained programming (FCCP), a fuzzy credibility-constrained quadratic

programming (FCCQP) model was proposed and expressed by Equation (18) as follows:

Minf ¼
Xn
j¼1

[cj þ dj(xj)
2] (18a)

subject to

Cr
Xn
j¼1

faijxj � fbU
8<:

9=; � zU , i ¼ 1, 2, . . . , m (18b)

Cr
Xn
j¼1

faijxj � fbL
8<:

9=; � zL, i ¼ 1, 2, . . . , m (18c)

xj � 0, j ¼ 1, 2, . . . , n (18d)

According to the analysis above, the FCCQP model can be transformed into a crisp model and solved. The detailed process
is summarized step by step as follows (also shown in Figure 2):

1. Formulate the FCCQP model with the objective function expressed as QP and uncertainties expressed as fuzzy sets;
2. Transform the FCCQP model into deterministic models according to the definition of credibility measures under various

weight coefficients w through Equations (14)–(17);
3. Solve the deterministic models under a certain confidence level of upper bounds (zU), lower bounds (zL), and weight coef-

ficient w to obtain feasible solutions;

4. Repeat steps 2 and 3 and obtain feasible solutions under various credibility levels of upper bounds (zU) and lower bounds
(zL), and various weight coefficients w to obtain final solutions.
3. APPLICATION

3.1. Application of the FCCQP model to optimize chlorination scenarios under conditions of uncertainty

Since the boosters in the WDS should be designed with low operation and construction cost and the cost of boosters is a

quadratic function, QP is required. In addition, the left-hand side and the right-hand side of the upper and lower limits con-
straints have fuzzy uncertainties, and, therefore, the FCCP model is required. By combining QP and FCCP, the FCCQP model
is required to optimize the booster costs.
om http://iwa.silverchair.com/aqua/article-pdf/71/5/608/1101489/jws0710608.pdf
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3.1.1. Objective function

The optimization problem is formulated by Equation (19) as follows:

Minf ¼ a
Xnb

k¼1

Xnt

l¼1

xklDtl þ
Xnb

k¼1

b((xkl)
max)0:13

 !
(19)

where f is the objective function including operation cost (OC) ($/day) and construction cost (CC) ($/day), xkl are the
decision variables representing the booster chlorination injection rate at time period l at booster station k (mg/min), Dtl is
the time duration for period l (min), nb is the number of booster chlorination stations, nt is the number of time periods, α
and β are the coefficients in the cost function, which are assumed to be $2/mg and $2.21 (mg/min)�0.13, respectively, and
xmax
kl is the maximum booster injection rate (mg/min).
3.1.2. Constraints

The nodal residual chlorine concentration should be kept within acceptable limits, which are expressed by Equation (20) as
follows:

Cr
Xnb

k¼1

Xnt

l¼1

g(Bkl
ij )xkl � fCU

 !
� zU , i ¼ 1, 2, . . . , m; j ¼ 1, 2, . . . , n (20a)

Cr
Xnb

k¼1

Xnt

l¼1

g(Bkl
ij )xkl � fCL

 !
� zL, i ¼ 1, 2, . . . , m; j ¼ 1, 2, . . . , n (20b)

where fBkl
ij is the fuzzy response coefficients matrix of chlorine concentration at the node j at monitoring time i to the unit

injection rate at booster or source location k at time l based on the superposition principle (Lansey et al. 2007), fCU andfCL are the fuzzy sets for acceptable upper and lower limits for chlorine concentration on the right-hand side of the con-
straints, zU and zL are predetermined confidence levels for constraints Cr

Pnb
k¼1

Pnt
l¼1

g(Bkl
ij )xkl � fCU

� �
and

Cr
Pnb

k¼1

Pnt
l¼1

g(Bkl
ij )xkl � fCL

� �
, respectively.
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Besides the constraints of chlorine concentration, the constraints of hydraulic balance, energy conservation, and non-nega-

tive conditions should also be satisfied, which can be found in the literature (Wang & Zhu 2021b). The fuzzy response
coefficients matrix of chlorine concentration is obtained by hydraulic solver EPANET, where the hydraulic balance and
energy conservation can be satisfied.
3.2. Example 1

The proposed methodology was applied to a small WDS (shown in Figure 3). Detailed information of the WDS can be found

in the literature (Wang & Zhu 2021b). The lower bound, the most likely value, and the upper bound for fuzzy upper limit of
chlorine concentration are set to be 3.5, 4.0, and 4.5 mg/L, respectively. Similarly, the lower bound, the most likely value, and
the upper bound for fuzzy lower limit of chlorine concentration are set to be 0.15, 0.2, and 0.25 mg/L, respectively.
3.3. Example 2

In this paper, the Brushy Plain water distribution network system was applied, as shown in Figure 4. Detailed information of
the WDS can also be found in the literature (Wang & Zhu 2021b). The most likely response coefficient matrix Bkl

ij was
obtained by setting the source type as mass booster type with a time step of 1 h in a total of 24 h to be coincident with
the hydraulic cycle time of 24 h. The lower bound and upper bound of Bkl

ij were set to be 0.9 and 1.1 times of the most

likely response coefficient matrix. By simulating hydraulic and water quality analysis in 960 h to make sure that the
system became stable and periodicity was obtained, the last 24 h analysis result was used. The global bulk and wall decay
coefficients were set to be kb¼ 0.53/day and kw¼ 5.1 mm/day, respectively. The lower bound, the most likely value, and

the upper bound for fuzzy upper and lower limits were the same as Example 1.
The FCCQP model can be solved by ‘Solver’ add-on in Microsoft Excel. By applying the FCCQP model, the total booster

costs under various confidence level and weight coefficients were obtained.
Figure 3 | Pipenet layout of Example 1.
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Figure 4 | Pipenet layout of Example 2.
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4. RESULTS AND DISCUSSION

4.1. Application to example 1

In this study, the credibility levels ζ for upper and lower chlorine concentration limits were set to be 0.5, 0.6, 0.7, 0.8, and 0.9,
respectively. The weight coefficients of probability w were set to be 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0, respect-

ively. The constraints connected with weight coefficients ranging from 0.1 to 0.9 were classified into scenario 1 and scenario 2.
By solving the FCCQP model, the booster cost under various credibility levels ζ and weight coefficients w could be obtained,
which could supply decision makers with sufficient information under uncertainty. The results obtained indicated that the
booster costs had no relationship with the credibility levels for upper chlorine concentration limits. When ζU¼ 0.7 and

ζL¼ 0.5, 0.6, 0.7, 0.8, and 0.9, the conditions were represented by Cases A–E, respectively. The booster costs under various
cases and for weight coefficients w of 0.0, 0.5, and 1.0 are shown in Figure 5. When the weight coefficient of possibility w is
1.0, the booster costs for Cases A–E are $26.37/day, $27.13/day, $27.90/day, $28.69/day, and $29.49/day, respectively. When

the weight coefficient of possibility w is 0.0, the booster costs for Cases A–E are $34.63/day, $35.55/day, $36.49/day, $37.44/
day, and $38.42/day, respectively. When the weight coefficient of possibility w is 0.5, the booster costs for Cases A–E are
$30.31/day, $31.99/day, $33.73/day, $35.55 /day, and $37.44/day, respectively. These results indicated that the booster
://iwa.silverchair.com/aqua/article-pdf/71/5/608/1101489/jws0710608.pdf



Figure 5 | Booster cost corresponding to ζU¼ 0.7 and ζL¼ 0.5 (a), 0.6 (b), 0.7 (c), 0.8 (d), and 0.9 (e) with weight coefficients w of 0.0, 0.5,
and 1.0.
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cost decreased when the weight coefficient of possibility increased from 0.0 to 1.0. In addition, the booster cost increased with
the confidence level of lower chlorine concentration limits ζL.

In the booster costs, the proportions of operation cost and construction cost corresponding to Cases A–E are shown in
Figure 6. The result indicated that the proportion of operation cost decreased with the weight coefficient w, which was
the same with the variation in the total booster cost. However, the construction cost increased with the weight coefficient
w. In addition, the proportion of operation cost increased with the confidence level of lower chlorine concentration limits

ζL, and the proportion of construction cost decreased with the confidence level of lower chlorine concentration limits ζL.
The results indicated that more booster injection mass was required with the increasing credibility levels for lower chlorine
concentration limits ζL, which also led to an increase in booster cost and in the proportion of operation cost. The confidence

level for lower chlorine concentration limits ζL refers to the degree of lower chlorine concentration limits constraint was sat-
isfied, the results indicated that the WDS should be operated to inject more chlorine under more reliable level for lower
chlorine concentration limits.

For the weight coefficients of w ranging from 0.0 to 1.0, two scenarios were considered (shown in Table 1). When the
weight coefficient is 0.5, the booster cost for the two scenarios are the same values of $30.31/day, $31.99/day, $33.73/
day, $35.55/day, and $37.44/day corresponding to Cases A–E. The reason is that the constraints in the two scenarios

become the same. In addition, the results obtained are of the same value of $30.31/day under w¼ 0.5 for Case A, w¼ 0.6
Figure 6 | Proportion of operation cost (P1) and construction cost (P2) corresponding to ζU¼ 0.7 and ζL¼ 0.5 (a), 0.6 (b), 0.7 (c), 0.8 (d), and 0.9 (e).
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Table 1 | Booster cost for various cases, scenarios, and weight coefficients for Example 1

Booster cost ($/day)

Case A B C D E

Scenario S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

w 0.00 34.63 35.55 36.49 37.44 38.42
0.10 34.13 84.24 35.14 110.91 36.17 150.78 37.23 / 38.31 /
0.20 33.51 44.74 34.63 50.70 35.78 57.43 36.96 65.11 38.17 73.95
0.30 32.73 36.17 33.99 39.41 35.29 42.90 36.62 46.65 38.00 50.70
0.40 31.70 32.42 33.14 34.63 34.63 36.96 36.17 39.41 37.77 42.00
0.50 30.31 31.99 33.73 35.55 37.44
0.60 28.29 28.95 30.31 30.31 32.42 31.70 34.63 33.14 36.96 34.63
0.70 25.13 28.01 27.64 29.14 30.31 30.31 33.14 31.50 36.17 32.73
0.80 19.42 27.32 22.76 28.29 26.37 29.29 30.31 30.31 34.63 31.35
0.90 0.00 26.79 10.60 27.64 16.32 28.51 22.76 29.40 30.31 30.31
1.00 26.37 27.13 27.90 28.69 29.49

Note: S1 refers to scenario 1 and S2 refers to scenario 2.
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for Case B, w¼ 0.7 for Case C, w¼ 0.8 for Case D, and w¼ 0.9 for Case E, respectively. The reason is that the constraints
expressed in Equations (14a) and (14b) are the same.

The comparisons of scenario 1 and scenario 2 for Cases–E are shown in Figure 7. For Case A, the two curves corresponding

to scenario 1 and scenario 2 have only one intersection at a weight coefficient w value of 0.5 with the booster costs of $31.99/
day, $33.73/day, $35.55/day, and $37.44/day (Figure 7(a). With the increasing confidence level for lower limits ζL, the boos-
ter costs increase from $31.99/day to $37.44/day. Besides the intersection of w¼ 0.5, booster costs at the other intersection

are $30.31/day at a weight coefficient w value of 0.6 (Figure 7(b), 0.7 (Figure 7(c), 0.8 (Figure 7(d), and 0.9 (Figure 7(e) cor-
responding to Cases B–E. The results obtained can imply an interrelationship between the credibility levels of lower chlorine
concentration limits ζL, the weight coefficients w, and booster costs. For scenarios 1 and 2, the booster cost decreases with the

weight coefficients w. The booster cost is a concave function for scenario 1, and it is a convex function for scenario 2.
The FCCQP model can provide more information with various weight coefficients and can reflect the mutual interactions

among possibility, necessity, and credibility measures. As such, the FCCQP model is more representative and generalized for
optimizing the booster cost under conditions of uncertainty.

The comparisons of booster costs for Cases A–E in scenario 1 are shown in Figure 8. The booster cost increases with the
confidence level of lower chlorine concentration limits ζL due to the booster cost increasing in the order of Case A,Case
B,Case C,Case D,Case E, which is the same with the regulation shown in Figure 5. For example, when w¼ 0.7, the

booster costs are $25.13/day, $27.64/day, $30.31/day, $33.14/day, and $36.17/day for Cases A–E, respectively. In addition,
the increase magnitude increases when the weight coefficient value w increases from 0.0 to 0.9. However, when w¼ 1.0, the
booster costs are $26.37/day, $27.13/day, $27.90/day, $28.69/day, and $29.49/day for Cases A–E, respectively. The increase

magnitude is less than that under other w values of 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9.
In scenario 1, when the weight coefficient increases from 0.0 to 0.9, the booster cost decreases from $34.13/day to $0.00/

day, from $35.14/day to $10.60/day, from $36.17/day to $16.32/day, from $37.23 /day to $22.76/day, and from $38.31/day to
$30.31/day for Cases A–E, respectively. The decrease magnitude decreases in the order of Case A.Case B.Case C.Case

D.Case E. When w¼ 1.0, there is a dramatic change in booster cost. For example, for Cases A–D, the booster costs at w¼
1.0 are higher than the booster costs at w¼ 0.9, while for Case E, the booster cost at w¼ 1.0 is slightly lower than the booster
costs atw¼ 0.9. The variations in weight coefficients refer to the change from possibility measure to necessity measure. Under

the possibility measure, the booster costs are the greatest; however, under the necessity measure, the booster costs are not
always the least for scenario 1.

The comparisons of booster cost for Cases A–E in scenario 2 are shown in Figure 9. Similar to scenario 1, the booster cost

increases with the confidence level of lower chlorine concentration limits ζL due to the booster cost also increasing in the
order of Case A,Case B,Case C,Case D,Case E, which is the same with the regulation shown in Figure 5. For example,
when w¼ 0.7, the booster costs are $28.01/day, $29.14/day, $30.31/day, $31.50/day, and $32.73/day for Cases A–E,
://iwa.silverchair.com/aqua/article-pdf/71/5/608/1101489/jws0710608.pdf



Figure 7 | Comparison of booster costs for scenario 1 and scenario 2 under various weight coefficients w and Case A (a), Case B (b), Case C
(c), Case D (d), and Case E (e).

AQUA — Water Infrastructure, Ecosystems and Society Vol 71 No 5, 622

Downloaded fr
by guest
on 10 April 202
respectively. Different from scenario 1, the increase magnitude of booster cost is the greatest in case of w¼ 0.1, while in scen-

ario1, the increase magnitude of booster cost is the greatest in the case of w¼ 0.9. In addition, when w¼ 0.1, feasible
solutions cannot be obtained for Cases D and E due to the upper limit constraints.
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Figure 8 | Comparison of booster costs for Cases A–E under scenario 1.

Figure 9 | Comparison of booster costs for Cases A–E under scenario 2.
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In scenario 2, when the weight coefficient increases from 0.2 to 1.0, the booster cost decreases from $44.74/day to $26.37/
day, from $50.70/day to $27.13/day, from $57.43 /day to $27.90/day, from $65.11/day to $28.69 /day, and from $73.95/day

to $29.49/day for Cases A–E, respectively. Contrary to scenario 1, the decrease magnitude decreases in the order of Case
E.Case D.Case C.Case B.Case A. The decrease magnitudes for Cases A–C in scenario 1 are larger than those in scen-
ario 2, while for Cases D and E, the decrease magnitudes in scenario 1 are less than those in scenario 2. When w¼ 0.0, there
://iwa.silverchair.com/aqua/article-pdf/71/5/608/1101489/jws0710608.pdf
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is a dramatic change in booster cost. For example, for Cases A–E, the booster costs at w¼ 0.0 are $34.63/day, $35.55/day,

$36.49/day, $37.44/day, and $38.42/day, respectively, while booster costs at w¼ 0.2 for Cases A–E are $44.74/day,
$50.70/day, $57.43/day, $65.11/day, and $73.95/day. The booster costs at w¼ 0.0 are less than the booster cost at
w¼ 0.2. In addition, the increase magnitude increases when the weight coefficient value w increases from 0.0 to 0.9.

However, when w¼ 1.0, the booster costs are $26.37/day, $27.13/day, $27.90 /day, $28.69/day, and $29.49/day for Cases
A–E, respectively. The increase magnitude is less than that under other w values of 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
and 0.9.

With reference to the sameWDS with only fuzziness on the right-hand side of the constraints, the injection mass for Case C

increases with the weight coefficients; however, in this paper with dual fuzzy uncertainties on both sides of the constraints,
the injection mass for Case C decreases with the weight coefficients under two scenarios (shown in Figure 10). For weight
coefficients lower than 0.7, the results obtained in scenario 1 are close to the results obtained in the reference, while for

weight coefficients greater than 0.7, the results obtained in scenario 2 are close to the results obtained in the reference.

4.2. Application to Example 2

Similar to Example 1, the booster costs for various cases, scenarios, and weight coefficients for Example 2 are shown in

Table 2. Cases A–E refer to ζU¼ 0.7 and ζL¼ 0.5, 0.6, 0.7, 0.8, and 0.9, respectively. When the weight coefficient is 0.5,
the booster costs for the two scenarios are the same values of $11.92/day, $12.37/day, $12.83/day, $13.31/day, and
$13.81/day corresponding to Cases A–E. The reason is that the constraints in the two scenarios become the same. In addition,

the results obtained are of the same value of $11.92/day under w¼ 0.6 (Case B), w¼ 0.7 (Case C), w¼ 0.8 (Case D) and,
w¼ 0.9 (Case E), respectively. The reason is that the constraints expressed in Equations (14a) and (14b) are the same. As
such, there are two intersections between scenario 1 and scenario 2 at w¼ 0.5 and 0.6 for Case B, at w¼ 0.5 and 0.7 for

Case C, at w¼ 0.5 and 0.8 for Case D, and at w¼ 0.5 and 0.9 for Case E, respectively.
The booster cost increases with the confidence level of lower chlorine concentration limits ζL due to the booster cost

increasing in the order of Case A,Case B,Case C,Case D,Case E. For example, when w¼ 0.7 in scenario 1, the boos-

ter costs are $10.52/day, $11.20/day, $11.92/day, $12.68/day, and $13.48/day for Cases A–E, respectively. When w¼ 0.7 in
scenario 2, the booster costs are $11.30/day, $11.61/day, $11.92/day, $12.24/day, and $12.57/day for Cases A–E, respect-
ively. When the confidence level of lower chlorine concentration limits ζL is less than the value of w, the booster costs in
scenario 1 are less than those in scenario 2. When the confidence level of lower chlorine concentration limits ζL is greater

than the value of w, the booster costs in scenario 1 are larger than those in scenario 2. In scenario 2, a feasible solution
cannot be found at w¼ 0.1 for Cases A–E, and at w¼ 0.2, a feasible solution also cannot be found for Case E. In addition,
the increase magnitude increases when the weight coefficient value w increases from 0.0 to 0.9. However, when w¼ 1.0, the
Figure 10 | Comparison of booster cost with the reference (Wang & Zhu 2021b).
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Table 2 | Booster cost for various cases, scenarios, and weight coefficients for Example 2

Booster cost ($/day)

Cases A B C D E

Scenarios
S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

w 0.00 13.07 13.31 13.56 13.81 14.07
0.10 12.94 / 13.20 / 13.48 / 13.75 / 14.04 /
0.20 12.77 15.71 13.07 17.25 13.37 18.98 13.68 20.94 14.00 /
0.30 12.57 13.48 12.90 14.33 13.24 15.24 13.59 16.21 13.96 17.25
0.40 12.29 12.48 12.68 13.07 13.07 13.68 13.48 14.33 13.90 15.00
0.50 11.92 12.37 12.83 13.31 13.81
0.60 11.38 11.56 11.92 11.92 12.48 12.29 13.07 12.68 13.68 13.07
0.70 10.52 11.30 11.20 11.61 11.92 11.92 12.68 12.24 13.48 12.57
0.80 8.93 11.12 9.87 11.38 10.86 11.65 11.92 11.92 13.07 12.20
0.90 0.00 10.97 6.26 11.20 8.04 11.44 9.87 11.68 11.92 11.92
1.00 10.86 11.06 11.27 11.49 11.70

Note: S1 refers to scenario 1, and S2 refers to scenario 2.
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booster costs are $10.86/day, $11.06/day, $11.27/day, $11.49/day, and $11.70/day for Cases A–E, respectively. The increase
magnitude is less than that under other w values of 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9. In scenario 1, when the
weight coefficient increases from 0.3 to 1.0, the booster cost decreases from $12.57/day to $0.00/day, from $12.90/day to

$6.26/day, from $13.24/day to $8.04/day, from $13.59/day to $9.87/day, and from $13.96/day to $11.92/day for Cases A–E,
respectively. In scenario 2, when the weight coefficient increases from 0.3 to 1.0, the booster cost decreases from $13.48/day
to $10.97/day, from $14.33/day to $11.20/day, from $15.24/day to $11.44/day, from $16.21/day to $11.68/day, and from

$17.25/day to $11.92/day for Cases A–E, respectively. Contrary to scenario 1, the decrease magnitude decreases in the order
of Case E.Case D.Case C.Case B.Case A. Similar to Example 1, for Cases A–C the decrease magnitudes in scenario
1 are larger than those in scenario 2, while for Cases D and E, the decrease magnitudes in scenario 1 are less than those in

scenario 2.
5. CONCLUSION

In this paper, a FCCQP model was developed for determining the optimization cost of booster in the WDS under fuzzy con-

ditions of uncertainty, which could deal with fuzziness on both the left-hand and right-hand sides of constraints. The
proposed model was applied to two examples to address the results of booster cost affected by credibility levels and
weight coefficients.

The results indicated that the booster cost, as well as the proportion of operation cost, increases with the increase in the

confidence level for lower chlorine concentration ζL, i.e., the booster cost and the proportion of operation cost increase in
the order of Case A,Case B,Case C,Case D,Case E. In addition, the booster cost, as well as the proportion of oper-
ation cost, decreases with the weight coefficient w. In scenario 1, the decrease magnitudes decrease with the increase in the

confidence level for lower chlorine concentration ζL, while in scenario 2, the decrease magnitudes increase with the increase
in the confidence level for lower chlorine concentration ζL. The booster cost function curves with the variation of weight coef-
ficients are concave and convex for scenario 1 and scenario 2, respectively. For Case A, there is one intersection for the two

curves of scenarios 1 and 2, while for Cases B–E, there are two intersections for the two curves of scenarios 1 and 2. Com-
pared with the reference with the fuzzy right-hand side constraint, the variation regulation is quite different for the two
scenarios. The results obtained here can help managers to make informed decisions on disinfection injection under con-

ditions of fuzzy uncertainty.
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